247
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling Coal Swelling during Pyrolysis at Elevated Pressure by Using a Single Bubble Model: Validation and Application

, , , , , & show all
Pages 1138-1150 | Received 05 Aug 2021, Accepted 29 Sep 2021, Published online: 10 Oct 2021

References

  • Benfell, K. E. 2001. Assessment of Char Morphology inHigh Pressure Pyrolysis and Combustion. PhD, The University of Newcastle.
  • Fletcher, T. H. 2019. Review of 30 years of research using the chemical percolation devolatilization model. Energy & Fuels 33 (12):12123–53. doi:10.1021/acs.energyfuels.9b02826.
  • Fletcher, T. H., and D. R. Hardesty 1992. Compilation of Sandia coal devolatilization data: milestone report. Milestone report. United States.
  • Fletcher, T. H., A. R. Kerstein, R. J. Pugmire, and D. M. Grant. 1990. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy & Fuels 4 (1):54–60. doi:10.1021/ef00019a010.
  • Hu, Z., Y. Peng, F. Sun, S. Chen, and Y. Zhou. 2021. Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel 293:120462. doi:10.1016/j.fuel.2021.120462.
  • Kidena, K., T. Yamashita, and A. Akimoto. 2007. Prediction of thermal swelling behavior on rapid heating using basic analytical data. Energy & Fuels 21 (2):1038–41. doi:10.1021/ef060355p.
  • Lee, C. W., A. W. Scaroni, and R. G. Jenkins. 1991. Effect of pressure on the devolatilization and swelling behaviour of a softening coal during rapid heating. Fuel 70 (8):957–65. doi:10.1016/0016-2361(91)90051-B.
  • Li, L., L. Duan, Z. Yang, Z. Sun, and C. Zhao. 2021. Pressurized oxy-fuel combustion of a char particle in the fluidized bed combustor. Proceedings of the Combustion Institute 38 (4):5485–92. doi:10.1016/j.proci.2020.06.111.
  • Li, S., H. Yang, T. Fletcher, and M. Dong. 2014. Simulation of the swelling of high volatile bituminous coal during pyrolysis. Energy & Fuels 28.7216-26
  • Matsuoka, K., Z.-X. Ma, H. Akiho, Z.-G. Zhang, A. Tomita, T. H. Fletcher, M. A. Wójtowicz, and S. Niksa. 2003. High-pressure coal pyrolysis in a drop tube furnace. Energy & Fuels 17 (4):984–90.
  • Niksa, S., G.-S. Liu, and R. H. Hurt. 2003. Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation. Progress in Energy and Combustion Science 29 (5):425–77. doi:10.1016/S0360-1285(03)00033-9.
  • Oh, M. S., W. A. Peters, and J. B. Howard. 1989. An experimental and modeling study of softening coal pyrolysis. AIChE J. 35 (5):775–92. doi:10.1002/aic.690350509.
  • Rahman, Z. U., X. Wang, J. Zhang, J. Baleta, M. Vujanović, and H. Tan. 2021. Kinetic study and optimization on SNCR process in pressurized oxy-combustion. Journal of the Energy Institute 94:263–71. doi:10.1016/j.joei.2020.09.010.
  • Sheng, C., and J. L. T. Azevedo. 2000. Modeling the evolution of particle morphology during coal devolatilization. Proceedings of the Combustion Institute 28 (2):2225–32. doi:10.1016/S0082-0784(00)80632-3.
  • Shurtz, R., K. Kolste, and T. Fletcher. 2011. Coal swelling model for high heating rate pyrolysis applications. Energy & Fuels 25 (5):2163–73. doi:10.1021/ef200240u.
  • Solomon, P. R., M. A. S. a. D. G. H. 1993. Measurement and modeling of advanced coal conversion processes. U. S. Department of Energy/ Morgantown Energy Technology Center, Volume I, Part 2. Final report.
  • Solomon, P. R., and T. H. Fletcher. 1994. Impact of coal pyrolysis on combustion. Symposium (International) on Combustion 25 (1):463–74. doi:10.1016/S0082-0784(06)80675-2.
  • Solomon, P. R., M. A. Serio, D. G. Hamblen, L. D. Smoot, and B. S. Brewster 1991. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991–December 31, 1991. United States.
  • Sun, H., S. Sun, D. Feng, Y. Zhao, Y. Zhang, L. Zhang, J. Wu, and Y. Qin. 2021. Mechanism of coke formation and corresponding gas fraction characteristics in biochar-catalyzed tar reforming during corn straw pyrolysis. Fuel Processing Technology 221:106903. doi:10.1016/j.fuproc.2021.106903.
  • Verma, P., Z. Yang, S. Hume, A. Maxson, and R. L. Axelbaum. 2021. Process design and analysis of a novel carbon-capture-ready process for flexible-load power generation: Modular pressurized air combustion. Energy Convers. Manage. 228:113638. doi:10.1016/j.enconman.2020.113638.
  • Wall, T. F., G.-S. Liu, H.-W. Wu, D. G. Roberts, K. E. Benfell, S. Gupta, J. A. Lucas, and D. J. Harris. 2002. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science 28 (5):405–33. doi:10.1016/S0360-1285(02)00007-2.
  • Wu, H., G. Bryant, K. Benfell, and T. Wall. 2000. An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy & Fuels 14 (2):282–90. doi:10.1021/ef990066j.
  • Wu, H., J. Cai, Q. Ren, C. Shi, A. Zhao, and Q. Lyu. 2020. A thermal and chemical fuel pretreatment process for NOx reduction from cement kiln. Fuel Processing Technology 210:106556. doi:10.1016/j.fuproc.2020.106556.
  • Wu, H., T. Wall, G. Liu, and G. Bryant. 1999. Ash liberation from included minerals during combustion of pulverized coal: The relationship with char structure and burnout. Energy & Fuels 13 (6):1197–202. doi:10.1021/ef990081o.
  • Yang, Z., D. Khatri, P. Verma, T. Li, A. Adeosun, B. M. Kumfer, and R. L. Axelbaum. 2021. Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure. Appl. Energy 285:116367. doi:10.1016/j.apenergy.2020.116367.
  • Yu, J., J. Lucas, T. Wall, G. Liu, and C. Sheng. 2004. Modeling the development of char structure during the rapid heating of pulverized coal. Combustion and Flame 136 (4):519–32. doi:10.1016/j.combustflame.2003.12.009.
  • Yu, J. L., V. Strezov, J. Lucas, G. S. Liu, and T. Wall. 2002. A mechanistic study on char structure evolution during coal devolatilization—Experiments and model predictions. Proceedings of the Combustion Institute 29 (1):467–73. doi:10.1016/S1540-7489(02)80061-X.
  • Zeng, D., and T. H. Fletcher. 2005. Effects of pressure on coal pyrolysis and char morphology. Energy & Fuels 19 (5):1828–38. doi:10.1021/ef0500078.
  • Zhang, J., C. Chen, A. Zhou, Z. U. Rahman, X. Wang, D. Stojiljković, N. Manić, M. Vujanović, and H. Tan. 2022. Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere. Energy 238:121846. doi:10.1016/j.energy.2021.121846.
  • Zhang, J., S. Zheng, C. Chen, X. Wang, Z. ur Rahman, and H. Tan. 2021. Kinetic model study on biomass pyrolysis and CFD application by using pseudo-Bio-CPD model. Fuel 293:120266. doi:10.1016/j.fuel.2021.120266.
  • Zygourakis, K. 1995. Coal combustion: Effect of process conditions on char reactivity. U.S. Department of Energy/ Morgantown Energy Technology Center. 1:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.