140
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of Polymeric Additives on Ignition, Combustion and Flame Characteristics and Soot Deposits of Crude Oil Droplets

ORCID Icon, & ORCID Icon
Pages 1299-1327 | Received 09 Dec 2020, Accepted 16 Oct 2021, Published online: 26 Oct 2021

References

  • Aboalhamayie, A., L. Festa, and M. Ghamari. 2019. evaporation rate of colloidal droplets of jet fuel and carbon-based nanoparticles: Effect of thermal conductivity. Nanomaterials 9 (9):1297. doi:10.3390/nano9091297.
  • Aharon, I., and B. D. Shaw. 1998. Estimates of liquid species diffusivities from experiments on reduced- gravity combustion of heptane-hexadecane droplets. Combust. Flame. Elsevier 113 (4):507–18. doi:10.1016/S0010-2180(97)00242-3.
  • Arisawa, H., and T. B. Brill. 1996. Flash pyrolysis of hydroxyl-terminated polybutadiene (HTPB) II: Implications of the kinetics to combustion of organic polymers. Combust. Flame. 106(1–2):144–54. Elsevier Inc. doi:10.1016/0010-2180(95)00254-5.
  • Auers, J. R., et al. 2014. The North Dakota Petroleum Council Study on Bakken Crude Properties Bakken Crude characterization task force prepared for the by. Dallas, TX: Turner, Mason and Company Consulting Engineers Available at: www.turnermason.com
  • Avedisian, C. T., and B. J. Callahan. 2000. Experimental study of nonane/hexanol mixture droplet combustion without natural or forced convection. Proc. Combust. Inst. 28 (1):991–97. Elsevier. doi:10.1016/S0082-0784(00)80306-9.
  • Avedisian, C. T., and G. S. Jackson. 2000. Soot patterns around suspended n-Heptane droplet flames in a convection-free environment. J. Propulsion Power 16 (6):974–79. doi:10.2514/2.5698.
  • Badakhshan, A., J. W. Bennewitz, and D. Talley. 2018. New ignition methods for droplet combustion studies. Combust. Sci. Technol. Taylor and Francis Inc. 190 (7):1302–12. doi:10.1080/00102202.2018.1445726.
  • Bae, J. H., and C. T. Avedisian. 2004. Experimental study of the combustion dynamics of jet fuel droplets with additives in the absence of convection. Combust. Flame. Elsevier 137 (1–2):148–62. doi:10.1016/J.COMBUSTFLAME.2004.02.003.
  • Bennewitz, J. W., A. Badakhshan, and D. G. Talley. 2020. Combustion characteristics of suspended hydrocarbon fuel droplets with various nanoenergetic additives. Combust. Sci. Technol. 2:1–26. Informa UK Limited. doi:10.1080/00102202.2020.1729756.
  • Brazier, D. W., and N. V. Schwartz. 1978. The effect of heating rate on the thermal degradation of polybutadiene’. J. Appl. Polym. Sci. 22(1):113–24. John Wiley & Sons, Ltd. doi:10.1002/app.1978.070220109.
  • Chauveau, C., Gökalp, I., Segawa, D., Kadota, T., & Enomoto, H. 2000. Effects of reduced gravity on methanol droplet combustion at high pressures. Proc. Combust. Inst. 28(1):1071–77. Elsevier Ltd. doi:10.1016/S0082-0784(00)80316-1.
  • Chauveau, C., and G. Monsallier. 1989. Obskrvations on the vaporization and burning of fuel droplets at reduced gravity during parabolic flights. Acta Astronaut. 20 (C):223–28. doi:10.1016/0094-5765(89)90073-8.
  • Chen, B. H., Liu, J. Z., Yang, W. J., Li, H. P., & Du, L. J. 2020. Effect of ammonium perchlorate coating on the ignition and combustion characteristics of Al/JP-10 nanofluid fuel. Combust. Sci. Technol. 192(8):1567–81. Taylor and Francis Inc. doi:10.1080/00102202.2019.1613385.
  • Chen, F., and J. Qian. 2000. Studies on the thermal degradation of polybutadiene. Fuel Proc. Technol. Elsevier 67 (1):53–60. doi:10.1016/S0378-3820(00)00073-4.
  • Chen, J. K., and T. B. Brill. 1991. Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions. Combust. Flame 87 (3–4):217–32. doi:10.1016/0010-2180(91)90109-O.
  • Conesa, J. A., R. Font, A. Fullana, J. A. Caballero. 1998. Kinetic model for the combustion of tyre wastes. Fuel. 77 (13):1469–75. Elsevier Ltd. doi:10.1016/S0016-2361(98)00068-4.
  • Das, M., Chakraborty, A., Datta, A., & Santra, A. K. 2017. Experimental studies on burning characteristics of methanol, diesel, and sunflower biodiesel fuels. Combus. Sci. Technol. 189 (2):213–30. Taylor and Francis Inc. doi:10.1080/00102202.2016.1206085.
  • Dee, V., and B. D. Shaw. 2004. Combustion of propanol-glycerol mixture droplets in reduced gravity. Int J Heat Mass Transf. 47 (22):4857–67. Pergamon. doi:10.1016/j.ijheatmasstransfer.2004.05.025.
  • Dietrich, D. L., Haggard Jr, J. B., Dryer, F. L., Nayagam, V., Shaw, B. D., & Williams, F. A. 1996. Droplet combustion experiments in spacelab. Symp. Combust. Proc. 26 (1):1201–07. doi:10.1016/S0082-0784(96)80336-5.
  • Dietrich, D.L., Nayagam, V., Hicks, M.C., Ferkul, P.V., Dryer, F.L., Farouk, T., Shaw, B.D., Suh, H.K., Choi, M.Y., Liu, Y.C. and Avedisian, C.T. 2014. Droplet combustion experiments aboard the International Space Station. Microgravity Sci Technol. 26(2):65–76. Kluwer Academic Publishers. doi:10.1007/s12217-014-9372-2.
  • Final supplemental environmental impact statement for the keystone XL project 2014. Accessed July 6, 2019 https://2012-keystonepipeline-xl.state.gov/documents/organization/221135.pdf.
  • Ghamari, M. 2016. AN EXPERIMENTAL EXAMINATION OF COMBUSTION OF ISOLATED LIQUID FUEL DROPLETS WITH POLYMERIC AND NANOPARTICLE ADDITIVES. PhD Diss., University of Iowa.
  • Ghamari, M., and A. Aboalhamayie. 2018. Thermal conductivity of colloidal suspensions of jet fuel and carbon-based nanoparticles and its effect on evaporation rate. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). American Society of Mechanical Engineers (ASME). doi: 10.1115/IMECE2018-88618.
  • Ghamari, M., and A. Ratner. 2015a. Experimental study of combustion of decane, dodecane and hexadecane with polymeric and nano-particle additives. Bulletin of the American Physical Society. American Physical Society. https://meetings.aps.org/Meeting/DFD15/Session/H35.2.
  • Ghamari, M., and A. Ratner. 2015b. Experimental study of combustion of polymer added n-decane and n-dodecane droplets. ASME 2015 International Mechanical Engineering Congress and Exposition. Houston, Texas, United States: ASME, p. Paper IMECE2015–52233. doi: 10.1115/IMECE2015-52233.
  • Ghamari, M., and A. Ratner. 2015c. Experimental study of combustion of polymer added n-decane and n-dodecane droplets. ASME International Mechanical Engineering Congress and Exposition (IMECE) 2015, Houston, Texas, United States; ASME. doi: 10.1115/IMECE2015-52233.
  • Ghamari, M., and A. Ratner. 2016. Combustion characteristics of diesel and Jet-A droplets blended with polymeric additive. Fuel 178 (March):63–70. doi:10.1016/j.fuel.2016.03.052.
  • Ghamari, M., and A. Ratner. 2017. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles. Fuel. 188:182–89. Elsevier Ltd. doi:10.1016/j.fuel.2016.10.040.
  • Ghata, N., and B. D. Shaw. 2014. Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. Int J Heat Mass Transf. 77:22–36. Elsevier Ltd. doi:10.1016/j.ijheatmasstransfer.2014.04.074.
  • Glassman, I., R. A. Yetter, and N. Glumac (2014) Combustion. Fifth Edit. Waltham, MA: Elsevier. Accessed July 22, 2019 https://pennstate.pure.elsevier.com/en/publications/combustion-fifth-edition
  • Gokalp, I., et al. 1989. Observations on the low temperature vaporization and envelope or wake flame burning of n-heptane droplets at reduced gravity during parabolic flights. Symp. Combust. Proc. 22 (1):2027–35. doi:10.1016/S0082-0784(89)80218-8.
  • Grassie, N., and H. Melville. 1949. The thermal degradation of polyvinyl compounds. II. The degradation of benzoyl peroxide catalyzed polymethyl methacrylates. Proc R Soc Lond A Math Phys Sci. 199 (1056):14–23. The Royal Society. doi:10.1098/rspa.1949.0122.
  • Hernandez, T. 2016. Oil train derails near mosier in oregon’s columbia river gorge - oregonlive.com, The Oregonian. Accessed July 6, 2019 https://www.oregonlive.com/pacific-northwest-news/2016/06/oil_train_derails_near_hood_ri.html
  • Hicks, M. C., V. Nayagam, and F. A. Williams. 2010. Methanol droplet extinction in carbon-dioxide-enriched environments in microgravity. Combust. Flame 157 (8):1439–45. doi:10.1016/j.combustflame.2010.05.007.
  • History of the combination of gas chromatography and mass spectrometry - American chemical society (no date). Accessed February 22, 2021 https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/gas-chromatography-mass-spectrometry.html
  • Jackson, G. S., and C. T. Avedisian. 1998. Combustion of unsupported water-in-n-heptane emulsion droplets in a convection-free environment. Int J Heat Mass Transf. 41(16):2503–15. Pergamon. doi:10.1016/S0017-9310(97)00316-5.
  • Kashiwagi, T., et al. 1986. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules 19 (8):2160–68. doi:10.1021/ma00162a010.
  • Kashiwagi, T. 1994. Polymer combustion and flammability-role of the condensed phase. Symp. Combust. Proc. 25 (1):1423–37. doi:10.1016/S0082-0784(06)80786-1.
  • Knyazev, V. D. 2007. Effects of chain length on the rates of C−C bond dissociation in linear alkanes and polyethylene. J Phys Chem. 111(19):3875–83. American Chemical Society. doi:10.1021/JP066419E.
  • Kuznetsov, G. V., et al. 2020. Ignition of bio-water-coal fuels based on coal and charcoal. Combust. Sci. Technol. Taylor and Francis Inc 1–24. doi: 10.1080/00102202.2020.1799203.
  • Li, M., et al. 2020. Experimental investigation of thermophysical properties and combustion characteristics of thickened jet fuel. Combust. Sci. Technol. Taylor and Francis Inc. 1–17. doi: 10.1080/00102202.2020.1716742.
  • List of common conversion factors (Engineering conversion factors) - IOR energy pty ltd (no date). Accessed February 25, 2021 http://w.astro.berkeley.edu/~wright/fuel_energy.html
  • Liu, Y. C., et al. 2015. The effect of support fibers on micro-convection in droplet combustion experiments. Proc. Combust. Inst. 35 (2):1709–16. Elsevier Ltd. doi:10.1016/j.proci.2014.07.022.
  • Manzello, S. L., et al. 2009. Fuel-dependent effects on droplet burning and sooting behaviors in microgravity. Energy and Fuels. 23 (7):3586–91. American Chemical Society. doi:10.1021/ef900450n.
  • Mikami, M., et al. 2018. generation of a large-scale N-decane-droplet cloud considering droplet pre-vaporization in “Group Combustion” experiments aboard Kibo/ISS. Int. J. Microgravity Sci. Appl 35 (2):350202. doi:10.15011//jasma.35.350202.
  • Nayagam, V., et al. 1998. Microgravity n-heptane droplet combustion in oxygen-helium mixtures at atmospheric pressure. AIAA J. 36 (8):1369–78. American Institute of Aeronautics and Astronautics Inc. doi:10.2514/2.557.
  • Nunez, C. 2014. Oil Train Derails Lynchburg, Virginia, National Geographic. Accessed July 6, 2019 https://news.nationalgeographic.com/news/energy/2014/04/140430-oil-train-derails-in-lynchburg-virginia/.
  • Patterson, G. K., J. L. Zakin, and J. M. Rodriguez. 1969. Drag reduction - polymer solutions, soap solutions, and solid particle suspensions in pipe flow. Ind Eng Chem 61 (1):22–30. doi:10.1021/ie50709a005.
  • Poletaev, N. I., and M. Y. Khlebnikova. 2020. Combustion of iron particles suspension in laminar premixed and diffusion flames. Combust. Sci. Technol. Bellwether Publishing, Ltd, 1–22. doi:10.1080/00102202.2020.1812588.
  • Ram, A., E. Finkelstein, and C. Elata. 1967. Reduction of Friction in Oil Pipelines by Polymer Additives. Ind. Eng. Chem. Process des. Dev 6 (3):309–13. doi:10.1021/i260023a009.
  • Ray, S., and R. P. Cooney. 2012. Thermal degradation of polymer and polymer composites. In Handbook of Environmental Degradation of Materials. William Andrew Publishing, 213–42. doi:10.1016/B978-1-4377-3455-3.00007-9.
  • Rogers, W. J. 2013. The effects of sterilization on medical materials and welded devices. Joining and Assembly of Medical Materials and Devices. Woodhead Publishing, 79–130. doi:10.1533/9780857096425.1.79.
  • Rose, E. N., et al. 2020. Autoignition dynamics of N-dodecane droplets under normal gravity. Combust. Sci. Technol. Bellwether Publishing, Ltd 1–20. doi: 10.1080/00102202.2020.1840369.
  • Sazhin, S. S., et al. 2005. Models for droplet transient heating: Effects on droplet evaporation, ignition, and break-up. Int. J. Thermal Sci. 44 (7):610–22. Elsevier Masson. doi:10.1016/J.IJTHERMALSCI.2005.02.004.
  • Schindelin, J., et al. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9 (7):676–82. doi:10.1038/nmeth.2019.
  • Schindelin, J., et al. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82 (7–8):518–29. doi:10.1002/mrd.22489.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9 (7):671–75 Accessed July 7, 2019 http://www.ncbi.nlm.nih.gov/pubmed/22930834
  • Setyawan, H. Y., et al. 2016. Ignition and combustion characteristics of single droplets of a crude glycerol in comparison with pure glycerol, petroleum diesel, biodiesel and ethanol. Energy. 113. Pergamon:153–59. doi:10.1016/J.ENERGY.2016.07.032.
  • Seville, L. R., T. Connor, and S. Federico-O’Murchu 2015. Heimdal, North Dakota, evacuated after fiery oil train crash, NBC News. Accessed July 6, 2019 https://www.nbcnews.com/news/us-news/heimdal-north-dakota-evacuated-after-fiery-oil-train-crash-n354686
  • Shaw, B. D., et al. 2001. Spacelab and drop-tower experiments on combustion of methanol/dodecanol and ethanol/dodecanol mixture droplets in reduced gravity. Combustion Science and Technology. 167(1):29–56. Taylor and Francis Inc. doi:10.1080/00102200108952176.
  • Shaw, B. D. 2014. ISS droplet combustion experiments - uncertainties in droplet sizes and burning rates. Microgravity Sci Technol. 26(2):89–99. Kluwer Academic Publishers. doi:10.1007/s12217-014-9377-x.
  • Shaw, B. D., B. D. Clark, and D. Wang. 2001. spacelab experiments on combustion of heptane/hexadecane droplets. AIAA J. 39 (12):12. doi:10.2514/2.1238.
  • Shaw, B. D., and F. A. Williams. 1990. Theory of influence of a low-volatility, soluble impurity on spherically-symmetric combustion of fuel droplets. Int J Heat Mass Transf. 33(2):301–17. Pergamon. doi:10.1016/0017-9310(90)90100-9.
  • Sim, H. S., et al. 2019. effects of inert and energetic nanoparticles on burning liquid ethanol droplets. Combust. Sci. Technol. 191 (7):1079–100. Taylor and Francis Inc. doi:10.1080/00102202.2018.1509857.
  • Sim, H. S., et al. 2020. Acoustically forced droplet combustion of liquid fuel with reactive aluminum nanoparticulates. Combust. Sci. Technol. 192 (5):761–85. Taylor and Francis Inc. doi:10.1080/00102202.2019.1593971.
  • Singh G, et al. 2019. Experimental investigation of combustion behavior of biodiesel-water emulsion. ASME 2019 International Mechanical Engineering Congress and Exposition. Salt Lake City, UT, USA: ASME, p. Paper IMECE2019–10917. doi: 10.1115/IMECE2019-10917.
  • Singh, G., M. Esmaeilpour, and A. Ratner. 2019a. Investigation of combustion properties and soot deposits of various us crude oils. Energies. 12(12):2368. Multidisciplinary Digital Publishing Institute. doi:10.3390/en12122368.
  • Singh, G., M. Esmaeilpour, and A. Ratner. 2019b. The effect of acetylene black on droplet combustion and flame regime of petrodiesel and soy biodiesel. Fuel. 246:108–16. Elsevier. doi:10.1016/J.FUEL.2019.02.115.
  • Singh, G., M. Esmaeilpour, and A. Ratner. 2020. Effect of carbon-based nanoparticles on the ignition, combustion and flame characteristics of crude oil droplets. Energy. 197:117227. Elsevier Ltd. doi:10.1016/j.energy.2020.117227.
  • Stivala, S. S., and L. Reich. 1980. Structure vs stability in polymer degradation. Polym. Eng. Sci. 20 (10):654–61. John Wiley & Sons, Ltd. doi:10.1002/pen.760201003.
  • US Energy Information Administration. 2010. Rail helps make Midwest a net shipper of crude oil - Today in energy - U.S. energy information administration (EIA). Accessed July 6, 2019 https://www.eia.gov/todayinenergy/detail.php?id=22432
  • US Energy Information Administration. 2015. Crude by rail accounts for more than half of East Coast refinery supply in February. Accessed July 6, 2019 https://www.eia.gov/todayinenergy/detail.php?id=21092
  • Wei, J. B., and B. D. Shaw. 2006. Influences of pressure on reduced-gravity combustion of HAN-methanol-water droplets in air. Combust. Flame. 146 (3):484–92. Elsevier. doi:10.1016/j.combustflame.2006.04.016.
  • Wei, X., and T. Luo. 2019. Chain length effect on thermal transport in amorphous polymers and a structure–thermal conductivity relation. PCCP. 21 (28):15523–30. The Royal Society of Chemistry. doi:10.1039/C9CP02397F.
  • Williams, A. 1973. Combustion of droplets of liquid fuels: A review. Combust. Flame 21 (1):1–31. doi:10.1016/0010-2180(73)90002-3.
  • Zhang, D., and T. F. Wall. 1994. Ignition of coal particles: The influence of experimental technique. Fuel. 73 (7):1114–19. Elsevier. doi:10.1016/0016-2361(94)90247-X.
  • Zhang, D.-K. 1992. Laser-induced ignition of pulverized fuel particles. Combust. Flame. 90 (2):134–42. Elsevier. doi:10.1016/0010-2180(92)90115-6.
  • Zhang, Y. 2012. A generalized model for hydrocarbon drops spreading on a horizontal smooth solid surface. University of Iowa. Accessed July 6, 2019 http://ir.uiowa.edu/etd/3416
  • Zurawski, R., and R. L. Zurawski. 2001. The iss fluids and combustion facility: microgravity combustion science and fluid physics research capability. Conference and Exhibit on International Space Station Utilization. Cape Canaveral,FL,U.S.A., p. 4925. doi: 10.2514/6.2001-4925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.