184
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on the Influence of Gas-Solid Heat Transfer in a Mesoscale Counterflow Combustor

ORCID Icon & ORCID Icon
Pages 1797-1818 | Received 25 May 2021, Accepted 04 Nov 2021, Published online: 26 Dec 2021

References

  • Ayoobi, M., and I. Schoegl. 2017. Numerical analysis of flame instabilities in narrow channels: Laminar premixed methane/air combustion. Int. J. Spray Combust. Dyn. 9 (3):155–71.
  • Belmont, E. L., I. Schoegl, and J. L. Ellzey. 2013. Experimental and analytical investigation of lean premixed methane/air combustion in a mesoscale counter-flow reactor. Proc. Combust. Inst. 34:3361–67. doi:10.1016/j.proci.2012.06.087.
  • Belmont, E. L., and J. L. Ellzey. 2014. Lean heptane and propane combustion in a non-catalytic parallel-plate counter-flow reactor. Combust. Flame. 161:1055–62. doi:10.1016/j.combustflame.2013.10.026.
  • Chen, C.-H., and P. D. Ronney. 2013. Scale and geometry effects on heat-recirculating combustors. Combust. Theory Model. 17 (5):888–905. doi:10.1080/13647830.2013.812807.
  • Ellzey, J. L., E. L. Belmont, and C. H. Smith. 2019. Heat recirculating reactors: Fundamental research and applications. Prog. Energy Combust. Sci. 72:32–58. doi:10.1016/j.pecs.2018.12.001.
  • Ernstberger, U., H. Cohrt, F. Porz, and F. Thümmler. 1983. Oxidation von Silizium-infiltriertem Siliziumkarbid. Berichte der DKG. 60:167–73.
  • Evans, R. S., D. J. Bourell, J. J. Beaman, and M. I. Campbell. 2003 Reaction bonded silicon carbide: SFF, process refinement and applications . 2003 Int. Solid Freeform Fabr. Symp. Proc., Vols. , 414–22 .
  • Fan, A., J. Wan, Y. Liu, B. Pi, H. Yao, and W. Liu. 2014. Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor. Appl. Therm. Eng. 62:13–19. doi:10.1016/j.applthermaleng.2013.09.010.
  • Fernandez-Tarrazo, E., M. Sanchez-Sanz, R. V. Fursenko, and S. S. Minaev. 2018. Multiple combustion regimes and performance of a counter-flow microcombustor with power extraction. Math. Model. Nat. Phenom. 13 (6):52. doi:10.1051/mmnp/2018056.
  • Fursenko, R. V., K. C. Chang, and Y. C. Chao. 2008. Specific features of combustion in a variable-section narrow channel with a periodically changing gas flow. Combust. Explos. Shock Waves. 44 (5):509–16. doi:10.1007/s10573-008-0079-9.
  • Fursenko, R. V., and S. S. Minaev. 2005. Stability in a system with counterflow heat exchange. Combust. Explos. Shock Waves. 41:133–39. doi:10.1007/s10573-005-0015-1.
  • Fursenko, R. V., S. S. Minaev, and V. S. Babkin. 2001. Thermal interaction of two flame fronts propagating in channels with opposing gas flows. Combust. Explos. Shock Waves. 37 (5):493–500. doi:10.1023/A:1012325216665.
  • Fursenko, R. V., V. V. Gubernov, V. A. Kosyakov, A. A. Shupik, B. Kichatov, et al. 2020. Combustion of lean methane–air flames in mesoscale reactor with opposite gas flows. Combust. Sci. Technol. doi:10.1080/00102202.2020.1842381.
  • Gauthier, G. P., G. M. Watson, and J. M. Bergthorson. 2014. Burning rates and temperatures of flames in excess-enthalpy burners: A numerical study of flame propagation in small heat-recirculating tubes. Combust. Flame. 161 (9):2348–60. doi:10.1016/j.combustflame.2014.02.011.
  • Gauthier, G. P., and J. M. Bergthorson. 2016. Effect of external heat loss on the propagation and quenching of flames in small heat-recirculating tubes. Combust. Flame. 173:27–38. doi:10.1016/j.combustflame.2016.07.030.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2017. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3. http://www.cantera.org
  • Hardesty, D. R., and F. J. Weinberg. 1973. Burners producing large excess enthalpies. Combust. Sci. Technol. 8 (5–6):201–14. doi:10.1080/00102207308946644.
  • Jones, A. R., S. A. Lloyd, and F. J. Weinberg. 1978. Combustion in heat exchangers. Proc. R. Soc. A Math. Phys. Eng. Sci. 360 (1700):97–115.
  • Ju, Y., and C. W. Choi. 2003. An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels. Combust. Flame. 133:483–93. doi:10.1016/S0010-2180(03)00058-0.
  • Kang, X., and A. Veeraragavan. 2015. Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls. Appl. Therm. Eng. 85:234–42. doi:10.1016/j.applthermaleng.2015.04.017.
  • Law, C. K. 2006. Combustion physics. Cambridge: Cambridge University Press.
  • Ma, L., H. Xu, X. Wang, Q. Fang, C. Zhang, and G. Chen. 2019. A novel flame-Anchorage micro-combustor: Effects of flame holder shape and height on premixed CH4/air flame blow-off limit. Appl. Therm. Eng. 158 (p):113836. doi:10.1016/j.applthermaleng.2019.113836.
  • Maruta, K., J. K. Parc, K. C. Oh, T. Fujimori, S. S. Minaev, R. V. Fursenko, et al. 2004. Characteristics of microscale combustion in a narrow heated channel. Combust. Explos. Shock Waves. 40(5):516–23. doi:10.1023/B:CESW.0000041403.16095.a8.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proc Combust Inst 33 (33):125–50. doi:10.1016/j.proci.2010.09.005.
  • Minaev, S. S., and V. S. Babkin. 2001. Flame propagation in a variable-section channel with gas filtration. Combust. Explos. Shock Waves. 37 (1):13–20. doi:10.1023/A:1002804322591.
  • Mujeebu, A. M. 2016. Hydrogen and syngas production by superadiabatic combustion - a review. Appl. Energy 173 (173):210–24. doi:10.1016/j.apenergy.2016.04.018.
  • Radyjowski, P. P., D. L. Bourell, D. Kovar, and J. L. Ellzey. 2021. Additive manufacturing of Si-SiC cermets for combustion device applications. 2021 Int. Solid Freeform Fabr. Symp. Proc. 157–168
  • Radyjowski, P. P., I. Schoegl, and J. L. Ellzey. 2021. Experimental and analytical investigation of a counterflow reactor at lean conditions. Combust. Sci. Technol. doi:10.1080/00102202.2021.1938017.
  • Rahbari, A., S. Homayoonfar, E. Valizadeh, M. R. Aligoodarz, D. Toghraie, et al. 2021. Effects of micro-combustor geometry and size on the heat transfer and combustion characteristics of premixed hydrogen/air flames. Energy. 215(p):119061. doi:10.1016/j.energy.2020.119061.
  • Ronney, P. D. 2003. Analysis of non-adiabatic heat-recirculating combustors. Combust. Flame. 135 (135):421–39. doi:10.1016/j.combustflame.2003.07.003.
  • Schoegl, I., and J. L. Ellzey. 2007. Superadiabatic combustion in conducting tubes and heat exchangers of finite length. Combust. Flame. 151 (1–2):142–59. doi:10.1016/j.combustflame.2007.01.009.
  • Schoegl, I., and J. L. Ellzey. 2009. A mesoscale fuel reformer to produce syngas in portable power systems. Proc. Combust. Inst. 32:3223–30. doi:10.1016/j.proci.2008.06.079.
  • Schoegl, I., V. M. Sauer, and P. Sharma. 2019. Predicting combustion characteristics in externally heated micro-tubes. Combust. Flame. 204:33–48. doi:10.1016/j.combustflame.2019.02.029.
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr., Lissianski, V. V., Qin, Z., et al. 2000. GRI-MECH3.0. s.n. http://combustion.berkeley.edu/gri-mech/ Accessed25 May 2021
  • Veeraragavan, A. 2015. On flame propagation in narrow channels with enhanced wall thermal conduction. Energy 93:631–40. doi:10.1016/j.energy.2015.09.085.
  • Vogel, B. J., and J. L. Ellzey. 2005. Subadiabatic and superadiabatic performance of two-section porous burner. Combust. Sci. Technol. 177:1323–38. doi:10.1080/00102200590950494.
  • Weinberg, F. J. 1971. Combustion temperatures: The future? Nature 233 (233):239–41. doi:10.1038/233239a0.
  • Williams, F. A. 2016. Chemical-Kinetic mechanisms for combustion applications, San Diego Mechanism web page. [Online]. Accessed 2021. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
  • Yang, W., S. K. Chou, C. Shu, Z. W. Li, H. Xue, et al. 2002. Combustion in micro-cylindrical combustors with and without a backward facing step. Appl. Therm. Eng. 22:1777–87. doi:10.1016/S1359-4311(02)00113-8.
  • Zuo, W., J. E, Q. Peng, X. Zhao, Z. Zhang, et al. 2017. Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for microthermophotovoltaic system. Energy 122:408–19. doi:10.1016/j.energy.2017.01.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.