337
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Co-Pyrolysis Behavior of Coal Slime and Chinese Medicine Residue by TG-FTIR-MS with Principal Component Analysis and Artificial Neural Network Model

, , , , , , , & show all
Pages 1840-1872 | Received 08 Sep 2021, Accepted 04 Nov 2021, Published online: 22 Nov 2021

References

  • Anca-Couce, A. 2016. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53:41–79. doi:10.1016/j.pecs.2015.10.002.
  • Bi, H., C. Wang, X. Jiang, C. Jiang, L. Bao, and Q. Lin. 2021a. Thermodynamics, kinetics, gas emissions and artificial neural network modeling of co-pyrolysis of sewage sludge and peanut shell. Fuel 284:118988. doi:10.1016/j.fuel.2020.118988.
  • Bi, H., X. Jiang, Q. Lin, X. Jiang, X. Jiang, L. Bao, L. Bao, H. Sun, and Q. Lin. 2021b. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR. Sci. Total Environ 798:149290. doi:10.1016/j.scitotenv.2020.142293.
  • Brems, A., J. Baeyens, J. Beerlandt, and R. Dewil. 2011. Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling. Resour. Conserv. Recycl 55 (8):772–81. doi:10.1016/j.resconrec.2011.03.003.
  • Buyukada, M. 2016. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation. Bioresour. Technol 216:280–86. doi:10.1016/j.biortech.2016.05.091.
  • Chen, W. H., C. W. Wang, H. C. Ong, P. L. Show, and T. H. Hsieh. 2019. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258:116168. doi:10.1016/j.fuel.2019.116168.
  • Chen, Z., H. Chen, X. Wu, J. Zhang, D. E. Evrendilek, J. Liu, G. Liang, and W. Li. 2021. Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics. Renew. Energy. doi:10.1016/j.renene.2020.10.095.
  • Cheng, J., X. Wang, T. Si, F. Zhou, J. Zhou, and K. Cen. 2016. Pore fractal structures and combustion dynamics of cokes derived from the pyrolysis of typical Chinese power coals. Fuel Process. Technol 149:49–54. doi:10.1016/j.fuproc.2016.04.004.
  • Ding, Y., O. A. Ezekoye, S. Lu, and C. Wang. 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers. Manag 120:370–77. doi:10.1016/j.enconman.2016.05.007.
  • Fan, X. L., F. Yang, W. Zhang, Z. J. Zhou, F. C. Wang, and Z. H. Yu. 2006. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity. J. Fuel Chem. Technol. 34 395–398
  • Fang, P., Z. Gong, Z. Wang, Z. Wang, and F. Meng. 2019. Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS. Renew. Energy 140:884–94. doi:10.1016/j.renene.2019.03.114.
  • Fang, S., Z. Yu, Y. Lin, S. Hu, Y. Liao, and X. Ma. 2015. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers. Manag 101:626–31. doi:10.1016/j.enconman.2015.06.026.
  • Fang, S., Z. Yu, Y. Lin, Y. Lin, Y. Fan, Y. Liao, and X. Ma. 2016. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Bioresour. Technol 209:265–72. doi:10.1016/j.biortech.2016.03.027
  • Fernandez, A., J. Soria, R. Rodriguez, J. Baeyens, and G. Mazza. 2019. Macro-TGA steam-assisted gasification of lignocellulosic wastes. J. Environ. Manage 233:626–35. doi:10.1016/j.jenvman.2018.12.087.
  • Gajic, D., I. Savic-Gajic, I. Savic, O. Georgieva, and S. Di Gennaro. 2016. Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks. Energy 108:132–39. doi:10.1016/j.energy.2015.07.068.
  • Gui, X., J. Liu, Y. Cao, Z. Miao, S. Li, Y. Xing, and D. Wang. 2015. Coal preparation technology: Status and development in China. Energy Environ 26 (6–7):997–1013. doi:10.1260/0958-305X.26.6-7.997.
  • Guo, F., Y. Dong, L. Dong, and Y. Jing. 2013. An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Manag 33 (4):825–32. doi:10.1016/j.wasman.2012.12.009.
  • Hu, J., Y. Chen, K. Qian, Z. Yang, H. Yang, Y. Li, and H. Chen. 2017. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3. Fuel Process. Technol 159:178–86. doi:10.1016/j.fuproc.2017.01.042.
  • Hu, J., Y. Yan, F. Evrendilek, M. Buyukada, and J. Liu. 2019. Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. J. Clean. Prod. 235:549–61. doi:10.1016/j.jclepro.2019.06.324.
  • Huang, J., J. Zhang, J. Liu, W. Xie, J. Kuo, K. Chang, M. Buyukada, F. Evrendilek, and S. Sun. 2019. Thermal conversion behaviors and products of spent mushroom substrate in CO 2 and N 2 atmospheres: Kinetic, thermodynamic, TG and Py-GC/MS analyses. J. Anal. Appl. Pyrolysis 139:177–86. doi:10.1016/j.jaap.2019.02.002.
  • Kan, T., V. Strezov, and T. J. Evans. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57:1126–40. doi:10.1016/j.rser.2015.12.185.
  • Kim, Y. S., Y. S. Kim, and S. H. Kim. 2010. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ. Sci. Technol 44 (13):5313–17. doi:10.1021/es101163e.
  • Kleinhans, U., S. Halama, and H. Spliethoff. 2017. The role of gasification reactions during pulverized solid fuel combustion: A detailed char combustion model based on measurements of char structure and kinetics for coal and pre-treated biomass. Combust. Flame 184:117–35. doi:10.1016/j.combustflame.2017.05.033.
  • Kusch, S., H. Oechsner, and T. Jungbluth. 2008. Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol 99 (5):1280–92. doi:10.1016/j.biortech.2007.02.008.
  • Li, J., and J. Wang. 2019. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. doi:10.1016/j.jclepro.2019.117946.
  • Liaw, S. S., V. Haber Perez, S. Zhou, O. Rodriguez-Justo, and M. Garcia-Perez. 2014. Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J. Anal. Appl. Pyrolysis 109:140–51. doi:10.1016/j.jaap.2014.06.018.
  • Lin, Y., H. Xiao, B. Chen, Y. Ge, Q. He, S. Tao, and W. Wang. 2020. Thermal behavior and general distributed activation energy model kinetics of Lignite–Chinese herb residues blends during co-pyrolysis. Bioresour. Technol 304:122991. doi:10.1016/j.biortech.2020.122991.
  • Liu, C., J. Hu, H. Zhang, and R. Xiao. 2016. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–70. doi:10.1016/j.fuel.2016.05.104.
  • Liu, L., Y. Cao, and Q. Liu. 2015. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel. doi:10.1016/j.fuel.2015.01.002.
  • Masnadi, M. S., R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi, C. J. Lim, N. Ellis, and J. R. Grace. 2014. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel 117:1204–14. doi:10.1016/j.fuel.2013.02.006.
  • Meng, X., Z. Wen, Y. Qian, and H. Yu. 2017. Evaluation of cleaner production technology integration for the Chinese herbal medicine industry using carbon flow analysis. J. Clean. Prod. 163:49–57. doi:10.1016/j.jclepro.2015.10.067.
  • Mureddu, M., F. Dessì, A. Orsini, F. Ferrara, and A. Pettinau. 2018. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel 212:626–37. doi:10.1016/j.fuel.2017.10.005.
  • Naqvi, S. R., R. Tariq, Z. Hameed, I. Ali, M. Naqvi, W. H. Chen, S. Ceylan, H. Rashid, J. Ahmad, S. A. Taqvi, et al. 2019. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renew. Energy 131:854–60. doi:10.1016/j.renene.2018.07.094.
  • Ni, Z., H. Bi, C. Jiang, C. Wang, J. Tian, W. Zhou, H. Sun, and Q. Lin. 2021. Investigation of the co-pyrolysis of coal slime and coffee industry residue based on machine learning methods and TG-FTIR: Synergistic effect, kinetics and thermodynamic. Fuel 305:121527. doi:10.1016/j.fuel.2021.121527.
  • Ni, Z., H. Bi, C. Jiang, H. Sun, W. Zhou, J. Tian, and Q. Lin. 2022a. Investigation of co-combustion of sewage sludge and coffee industry residue by TG-FTIR and machine learning methods. Fuel 309:122082. doi:10.1016/j.fuel.2021.122082.
  • Ni, Z., H. Bi, C. Jiang, J. Tian, H. Sun, W. Zhou, and Q. Lin. 2022b. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics. Sci. Total Environ. 804:150217. doi:10.1016/j.scitotenv.2021.150217.
  • Niu, X., S. Guo, L. Gao, Y. Cao, and X. X. Wei. 2017. Mercury Release during Thermal Treatment of Two Coal Gangues and Two Coal Slimes under N2 and in Air. Energy and Fuels 31 (8):8648–54. doi:10.1021/acs.energyfuels.7b00883.
  • Peng, X., X. Ma, Y. Lin, Z. Guo, S. Hu, X. Ning, Y. Cao, and Y. Zhang. 2015. Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products. Energy Convers. Manag 100:391–402. doi:10.1016/j.enconman.2015.05.025.
  • Senneca, O., F. Scala, R. Chirone, and P. Salatino. 2017. Relevance of structure, fragmentation and reactivity of coal to combustion and oxy-combustion. Fuel 201:65–80. doi:10.1016/j.fuel.2016.11.034.
  • Shen, J., J. Liu, Y. Xing, H. Zhang, L. Luo, and X. Jiang. 2018. Application of TG-FTIR analysis to superfine pulverized coal. J. Anal. Appl. Pyrolysis 133:154–61. doi:10.1016/j.jaap.2018.04.007.
  • Shi, H., J. N. Reimers, and J. R. Dahn. 1993. Structure-refinement program for disordered carbons. J. Appl. Crystallogr 26 (6):827–36. doi:10.1107/S0021889893003784.
  • Sun, Y., L. Liu, Q. Wang, X. Yang, and X. Tu. 2016. Pyrolysis products from industrial waste biomass based on a neural network model. J. Anal. Appl. Pyrolysis 120:94–102. doi:10.1016/j.jaap.2016.04.013.
  • Tian, J., Y. Liu, H. Bi, F. Li, L. Bao, K. Han, W. Zhou, Z. Ni, and Q. Lin. 2022. Experimental study on the spray characteristics of octanol diesel and prediction of spray tip penetration by ANN model. Energy 239:121920. doi:10.1016/j.energy.2021.121920.
  • Tian, L., B. Shen, H. Xu, F. Li, Y. Wang, and S. Singh. 2016. Thermal behavior of waste tea pyrolysis by TG-FTIR analysis. Energy 103:533–42. doi:10.1016/j.energy.2016.03.022.
  • Tripathy, V., B. B. Basak, T. S. Varghese, and A. Saha. 2015. Residues and contaminants in medicinal herbs - A review. Phytochem. Lett 14:67–78. doi:10.1016/j.phytol.2015.09.003.
  • Wang, C., H. Bi, Q. Lin, X. Jiang, and C. Jiang. 2020. Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renew. Energy 160:1048–66. doi:10.1016/j.renene.2020.07.046.
  • Wang, H., S. Liu, X. Li, D. Yang, X. Wang, and C. Song. 2018. Morphological and structural evolution of bituminous coal slime particles during the process of combustion. Fuel. doi:10.1016/j.fuel.2018.01.022.
  • Wang, H., S. Liu, X. Wang, Y. Shi, X. Qin, and C. Song. 2017a. Ignition and Combustion Behaviors of Coal Slime in Air. Energy and Fuels. doi:10.1021/acs.energyfuels.7b01960.
  • Wang, P., H. Yu, and S. Zhan. 2012. The catalytic pyrolysis of herb residue from the Chinese medicine industry. Energy Sources, Part A Recover. Util. Environ. Eff. 34:2192–202. doi:10.1080/15567036.2010.495974.
  • Wang, S., G. Dai, H. Yang, and Z. Luo. 2017b. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 62:33–86. doi:10.1016/j.pecs.2017.05.004.
  • Wang, Z., G. Liu, H. Zheng, F. Li, H. H. Ngo, W. Guo, C. Liu, L. Chen, and B. Xing. 2015. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour. Technol. doi:10.1016/j.biortech.2014.11.077.
  • Wu, J., B. Wang, and F. Cheng. 2017. Thermal and kinetic characteristics of combustion of coal sludge. J. Therm. Anal. Calorim 129 (3):1899–909. doi:10.1007/s10973-017-6341-1.
  • Xie, C., J. Liu, W. Xie, J. Kuo, X. Lu, X. Zhang, Y. He, J. Sun, K. Chang, W. Xie, et al. 2018. Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends. Renew. Energy 122:55–64. doi:10.1016/j.renene.2018.01.093.
  • Xin, X., S. Pang, F. de Miguel Mercader, and K. M. Torr. 2019. The effect of biomass pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal component analysis. J. Anal. Appl. Pyrolysis 138:145–53. doi:10.1016/j.jaap.2018.12.018.
  • Xu, J., S. Su, Z. Sun, M. Qing, Z. Xiong, Y. Wang, L. Jiang, S. Hu, and J. Xiang. 2016. Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process. Appl. Energy 182:20–28. doi:10.1016/j.apenergy.2016.08.121.
  • Xu, S., Y. Hu, S. Wang, Z. He, L. Qian, Y. Feng, C. Sun, X. Liu, Q. Wang, C. Hui, et al. 2019. Investigation on the co-pyrolysis mechanism of seaweed and rice husk with multi-method comprehensive study. Renew. Energy 132:1177–84. doi:10.1016/j.renene.2018.08.002.
  • Yang, S., X. Zhu, J. Wang, X. Jin, Y. Liu, F. Qian, S. Zhang, and J. Chen. 2015. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques. Bioresour. Technol. doi:10.1016/j.biortech.2015.06.083.
  • Zhang, C., S. H. Ho, W. H. Chen, Y. Xie, Z. Liu, and J. S. Chang. 2018. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy. doi:10.1016/j.apenergy.2018.03.129.
  • Zhang, C., Z. Zhang, L. Zhang, H. Zhang, Y. Wang, S. Hu, J. Xiang, and X. Hu. 2020a. Pyrolysis of herb waste: Effects of extraction pretreatment on characteristics of bio-oil and biochar. Biomass Bioenergy 143:105801. doi:10.1016/j.biombioe.2020.105801.
  • Zhang, K., S. Yang, S. Liu, J. Shangguan, W. Du, Z. Wang, and Z. Chang. 2020b. New Strategy toward Household Coal Combustion by Remarkably Reducing SO2 Emission. ACS Omega. doi:10.1021/acsomega.9b04293.
  • Zhou, K., Q. Lin, H. Hongwei, H. Huiqing, and L. Song. 2017. The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere. Energy 136 173–184 . doi:10.1016/j.energy.2016.02.038.
  • Zhou, K., Q. Lin, H. Hu, F. Shan, W. Fu, P. Zhang, X. Wang, and C. Wang. 2018. Ignition and combustion behaviors of single coal slime particles in CO2/O2 atmosphere. Combust. Flame 194:250–63. doi:10.1016/j.combustflame.2018.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.