475
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shape and stability characteristics of hydrogen-enriched natural-gas oxy-flames in a micromixer burner

, , , , &
Pages 1887-1909 | Received 16 Feb 2021, Accepted 10 Nov 2021, Published online: 21 Nov 2021

References

  • Abdelhafez, A., S. S. Rashwan, M. A. Nemitallah, and M. A. Habib, et al. 2018. Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. Appl. Energy 215 (2017):63–74. doi:10.1016/j.apenergy.2018.01.097.
  • Abdelwahid, S., M. Nemitallah, B. Imteyaz, A. Abdelhafez, M. Habib, et al. 2018. Effects of H2 enrichment and inlet velocity on stability limits and shape of CH4/H2−O2/CO2 flames in a premixed swirl combustor. Energy Fuels 32 (9):9916–25. doi:10.1021/acs.energyfuels.8b01958.
  • Ahmed, I., et al. 2018. Evaluation of impact on lean blowout limit and ignition delay while using alternative fuels on gas turbine combustor. ASME Turbo Expo. GT2018–75245. doi:10.1115/GT2018-75245.
  • Aliyu, M., A. Abdelhafez, S. A. M. Said, M. A. Habib, M. A. Nemitallah, I. B. Mansir, et al. 2019. Characteristics of oxyfuel combustion in lean-premixed multihole burners. Energy Fuels 33 (11):11948–58. doi:10.1021/acs.energyfuels.9b02821.
  • Amato, A., B. Hudak, P. D’Souza, P. D’Carlo, D. Noble, D. Scarborough, J. Seitzman, T. Lieuwen, et al. 2011. Measurements and analysis of CO and O2 emissions in CH 4/CO2/O2 flames. Proc. Combust. Inst. 33 (2):3399–405. doi:10.1016/j.proci.2010.07.015.
  • Andersson, K., and F. Johnsson. 2007. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel 86 (5–6):656–68. doi:10.1016/j.fuel.2006.08.013.
  • Andersson, K., R. Johansson, S. Hjärtstam, F. Johnsson, B. Leckner, et al. 2008. Radiation intensity of lignite-fired oxy-fuel flames. Exp. Thermal Fluid Sci. 33(1):67–76. doi:10.1016/j.expthermflusci.2008.07.010.
  • Araoye, A. A., A. Abdelhafez, R. Ben-Mansour, M. A. Nemitallah, M. A. Habib, et al. 2021. On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study. Chem. Eng. Proc. - Process. Intensif. 162 (February):108336. doi:10.1016/j.cep.2021.108336.
  • Asai, T., et al. 2011. Effects of multiple-injection-burner configurations on combustion characteristics for dry low-NOx combustion of hydrogen-rich fuels. Proc. ASME Turbo Expo. 2:311–20.
  • Bell, S. R., and M. Gupta. 1997. Extension of the lean operating limit for natural gas fueling of a spark ignited engine using hydrogen blending. Combust. Sci. Technol. 123 (1–6):23–48. doi:10.1080/00102209708935620.
  • Brohez, S., C. Delvosalle, and G. Marlair. 2004. A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire Safety J. 39 (5):399–411. doi:10.1016/j.firesaf.2004.03.002.
  • Carr, N. L., R. Kobayashi, and D. B. Burrows. 1954. Viscosity of hydrocarbon gases under pressure. J. Petroleum Technol. 6 (10):47–55. doi:10.2118/297-G.
  • Cozzi, F., and A. Coghe. 2006. Behavior of hydrogen-enriched non-premixed swirled natural gas flames. Int. J. Hydrog. Energy 31 (6):669–77. doi:10.1016/j.ijhydene.2005.05.013.
  • de Ferrières, S., A. El Bakali, B. Lefort, M. Montero, J. F. Pauwels, et al. 2008. Experimental and numerical investigation of low-pressure laminar premixed synthetic natural gas/O2/N2 and natural gas/H2/O2/N2 flames. Combust. Flame 154 (3):601–23. doi:10.1016/j.combustflame.2008.04.018.
  • Dodo, S., et al. 2011. Combustion characteristics of a multiple-injection combustor for a dry low-NOx combustion of hydrogen-rich fuels under medium pressure. Proc. ASME Turbo Expo. 2:467–76.
  • Fordoei, E. E., K. Mazaheri, and A. Mohammadpour. 2021. Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion. Energy 218:119524. doi:10.1016/j.energy.2020.119524.
  • Habib, M. A., H. M. Badr, S. F. Ahmed, R. Ben-Mansour, K. Mezghani, S. Imashuku, G. J. La O’, Y. Shao-Horn, N. D. Mancini, A. Mitsos, et al. 2011. A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int. J. Energy Res. 35 (9):741–64. doi:10.1002/er.1798.
  • Halter, F., C. Chauveau, and I. Gökalp. 2007. Characterization of the effects of hydrogen addition in lean premixed methane/air flames. Int. J. Hydrog. Energy 32 (13):2585–92. doi:10.1016/j.ijhydene.2006.11.033.
  • Hollon, B., et al. 2011. Ultra-low emission hydrogen/syngas combustion with a 1.3 MW injector using a micro-mixing lean-premix system. Proc. ASME Turbo Expo. 2:827–34.
  • Huelskamp, B., et al. 2011. Improved correlation for blowout of bluff body stabilized flames. In 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, AIAA, January 4–7, 2011–66.
  • IEA. 2020. Key World Energy Statistics, IEA, Paris. https://www.iea.org/reports/key-world-energy-statistics-2020
  • Ilbas, M., A. Bektas, and S. Karyeyen. 2019. A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: an experimental and numerical study. Fuel 256:115990. doi:10.1016/j.fuel.2019.115990.
  • Imteyaz, B. A., M. A. Nemitallah, A. A. Abdelhafez, M. A. Habib, et al. 2018. Combustion behavior and stability map of hydrogen-enriched oxy-methane premixed flames in a model gas turbine combustor. Int. J. Hydrog. Energy 43 (34):16652–66. doi:10.1016/j.ijhydene.2018.07.087.
  • Imteyaz, B., M. A. Habib, and R. Ben-Mansour. 2017. The characteristics of oxycombustion of liquid fuel in a typical water-tube boiler. Energy Fuels 31 (6):6305–13. doi:10.1021/acs.energyfuels.7b00489.
  • Kayadelen, H. K. 2017. Effect of natural gas components on its flame temperature, equilibrium combustion products and thermodynamic properties. J. Nat. Gas Sci. Eng. 45:456–73. doi:10.1016/j.jngse.2017.05.023.
  • Key World Energy Statistics 2016. 2016. OECD. doi:10.1787/key_energ_stat-2016-en.
  • Kim, H. S., V. K. Arghode, and A. K. Gupta. 2009. Flame characteristics of hydrogen-enriched methane–air premixed swirling flames. Int. J. Hydrog. Energy 34 (2):1063–73. doi:10.1016/j.ijhydene.2008.10.035.
  • Konnov, A. A., and I. V. Dyakov. 2005. Measurement of propagation speeds in adiabatic cellular premixed flames of CH4+O2+CO2. Exp. Thermal Fluid Sci. 29 (8):901–07. doi:10.1016/j.expthermflusci.2005.01.005.
  • Lee, B. J., and H. G. Im. 2017. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel. Proc. Combust. Inst. 36 (1):1569–76. doi:10.1016/j.proci.2016.06.129.
  • Leng, X., H. Huang, Q. Ge, Z. He, Y. Zhang, Q. Wang, D. He, W. Long, et al. 2021. Effects of hydrogen enrichment on the combustion and emission characteristics of a turbulent jet ignited medium speed natural gas engine: A numerical study. Fuel 290:119966. doi:10.1016/j.fuel.2020.119966.
  • Li, M., et al. 2017. Investigation of methane oxy-fuel combustion in a swirl-stabilised gas turbine model combustor. Energies 10(5). doi: 10.3390/en10050648.
  • Liu, F., H. Guo, and G. J. Smallwood. 2003. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. Combust. Flame Flame 133:4. doi:10.1016/S0010-2180(03)00019-1.
  • Liu, H., R. Zailani, and B. M. Gibbs. 2005. Comparison of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel 84 (7–8):833–40. doi:10.1016/j.fuel.2004.11.018.
  • Marsh, R., et al. 2017. Premixed methane oxycombustion in nitrogen and carbon dioxide atmospheres: measurement of operating limits, flame location and emissions. Proc. Combust. Inst. 36 (3). doi:10.1016/j.proci.2016.06.057.
  • Nemitallah, M. A., and M. A. Habib. 2013a. Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl. Energy 111:401–15. doi:10.1016/j.apenergy.2013.05.027.
  • Nozaki, T., S. Takano, T. Kiga, K. Omata, and N. Kimura. 1997. Analysis of the flame formed during oxidation of pulverised coal by an O2-CO2 mixture. Energy 22 (2):199–205. doi:10.1016/S0360-5442(96)00143-0.
  • Oh, J., and D. Noh. 2012. Laminar burning velocity of oxy-methane flames in atmospheric condition. Energy 45 (1):669–75. doi:10.1016/j.energy.2012.07.027.
  • Oh, S., Y. Shin, and Y. Kim. 2016. Stabilization effects of perforated plates on the combustion instability in a lean-premixed combustor. Appl. Therm. Eng. 107:508–15. doi:10.1016/j.applthermaleng.2016.06.143.
  • Rashwan, S. S., A. H. Ibrahim, T. W. Abou-Arab, M. A. Nemitallah, M. A. Habib, et al. 2017. Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner. Energy 122:159–67. doi:10.1016/j.energy.2017.01.086.
  • Rodrigues, J. M. N., and E. C. Fernandes. 2014. Stability analysis and flow characterization of multi-perforated plate premixed burners. In 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 7–10.
  • Shanbhogue, S. J., Y. S. Sanusi, S. Taamallah, M. A. Habib, E. M. A. Mokheimer, A. F. Ghoniem, et al. 2016. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 163:494–507. doi:10.1016/j.combustflame.2015.10.026.
  • Shi, C., C. Ji, S. Wang, J. Yang, H. Wang, et al. 2021. Experimental and numerical study of combustion and emissions performance in a hydrogen-enriched Wankel engine at stoichiometric and lean operations. Fuel 291:120181. doi:10.1016/j.fuel.2021.120181.
  • Song, Y., C. Zou, Y. He, C. Zheng, et al. 2015. The chemical mechanism of the effect of CO2 on the temperature in methane oxy-fuel combustion. Int. J. Heat Mass. Transf. 86:622–28. doi:10.1016/j.ijheatmasstransfer.2015.03.008.
  • Sullivan-Lewis, E., and V. McDonell. 2016. Predicting flameholding for hydrogen and natural gas flames at gas turbine premixer conditions. J. Eng. Gas Turbines Power 138 (12):1–9. doi:10.1115/1.4034000.
  • Taamallah, S., N. W. Chakroun, H. Watanabe, S. J. Shanbhogue, A. F. Ghoniem, et al. 2017. On the characteristic flow and flame times for scaling oxy and air flame stabilization modes in premixed swirl combustion. Proc. Combust. Inst. 36 (3):3799–807. doi:10.1016/j.proci.2016.07.022.
  • Tahtouh, T., F. Halter, E. Samson, C. Mounaïm-Rousselle, et al. 2009. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames. Int. J. Hydrog. Energy 34 (19):8329–38. doi:10.1016/j.ijhydene.2009.07.071.
  • Wall, T., et al. 2005. Oxy-fuel (O2/CO2, O2/RFG) technology for sequestration-ready CO2 and emission compliance. In The Proceedings of the 30th International Technical Conference on Coal Utilization and Fuel Systems, 523–34.
  • Wang, D., C. Ji, S. Wang, J. Yang, Z. Wang, et al. 2021. Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions. Int. J. Hydrog. Energy 46 (2):2667–83. doi:10.1016/j.ijhydene.2020.10.045.
  • Wang, J., Z. Huang, C. Tang, H. Miao, X. Wang, et al. 2009. Numerical study of the effect of hydrogen addition on methane–air mixtures combustion. Int. J. Hydrog. Energy 34 (2):1084–96. doi:10.1016/j.ijhydene.2008.11.010.
  • Watanabe, H., S. J. Shanbhogue, and A. F. Ghoneim. 2015. Impact of equivalence ratio on the macrostructure of premixed swirling CH4/Air and CH4/O2/CO2 flames. In Volume 4B: Combustion, Fuels and Emissions, ASME International. doi:10.1115/gt2015-43224.
  • Zhou, L., D. Gao, J. Zhao, H. Wei, X. Zhang, Z. Xu, R. Chen, et al. 2018. Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates. Combust. Flame 191:453–67. doi:10.1016/j.combustflame.2018.01.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.