173
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Distribution Law of Coal Spontaneous Combustion Hazard Area in Composite Goaf of Shallow Buried Close Distance Coal Seam Group

, , , &
Pages 1960-1980 | Received 16 Aug 2021, Accepted 14 Nov 2021, Published online: 25 Nov 2021

References

  • Brodny, J., M. Tutak, and Silesian. 2018. Determination of the zone with a particularly high risk of endogenous fires in the goaves of a longwall with caving. J. Appl. Fluid Mech. 11 (3):545–53. doi:10.29252/jafm.11.03.27240.
  • Cheng, W., L. Xin, G. Wang, Z. Liu, and W. Nie. 2015. Analytical research on dynamic temperature field of overburden in goaf fire-area under piecewise-linear third boundary condition. Int. J. Heat Mass Transf. 90:812–24. doi:10.1016/j.ijheatmasstransfer.2015.07.012.
  • Chi, Z., Ding, G., Zuo, S., Liu, Z., and Zhao, C. 1993. Theoretical calculation and observation analysis of three zones in fully mechanized goaf of top coal caving. J. China Univ. Min. Technol 22 (1): 11-19.
  • Fan, Y.-J., -Y.-Y. Zhao, X.-M. Hu, M.-Y. Wu, and D. Xue. 2020. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 263:116693. doi:10.1016/j.fuel.2019.116693.
  • Gao, F., Wang, W., Li, J., Zhao, J., and Hao, M. 2020. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining. J. China Coal Soc. 45 (S1):336–45 doi:10.13225/j.cnki.jccs.2019.1785.
  • He, F., Wang, J., Hao, C. , Cen, W., Xing, G., and Qi, X.2016. Study on the dangerous area of goaf spontaneous combustion in shallow and close distance coal seams with inner crossing layout. J. Safety Sci. Technol. 12 (2):68–72.
  • Jiao, G., Bai, C., Qi, X. , Qiao, S., Chen, L., Li, X., Ji, Y., Chen, L., and Song, R.2020. Distribution law of spontaneous combustion hazard of coal in lower goaf of close distance coal seams. Safety Coal Mines. 51 (1):187–90 doi:10.13347/j.cnki.mkaq.2020.01.042.
  • Kong, B., Z. Li, Y. Yang, Z. Liu, and D. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 24 (30):23453–70. doi:10.1007/s11356-017-0209-6.
  • Lu, X., J. Deng, Y. Xiao, X. Zhai, C. Wang, and X. Yi. 2022. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel 308:121234.
  • Ma, L., R. Guo, M. Wu, W. Wang, L. Ren, and G. Wei. 2020. Determination on the hazard zone of spontaneous coal combustion in the adjacent gob of different mining stages. Process Safety Environ. Prot. 142:370–79. doi:10.1016/j.psep.2020.06.035.
  • Nordon, P., N. W. Bainbridge, F. Szemes, and C. Myers (). A low temperature reaction calorimeter of the Calvet type for the measurement of the heat of oxidation of coal. J. Phys. E: Sci. Instrum. 18 4 338–341. 1985
  • Pan R, Cheng Y, Yu M, Lu C, and Yang K. (2013). New technological partition for “three zones” spontaneous coal combustion in goaf. International Journal of Mining Science and Technology, 23(4), 489–493. doi: 10.1016/j.ijmst.2013.07.005
  • Qi, Y., W. Wang, Q. Qi, Z. Ning, and Y. Yao. 2021. Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face. PloS One 16 (9):e0256911–e0256911. doi:10.1371/journal.pone.0256911.
  • Qin, B., Zhong, X., Wang, D. , Xin, H., and Shi, Q.2021. Research progress of coal spontaneous combustion process characteristics and prevention technology. Coal Sci. Technol. 49 (1):66–99. doi:10.13199/j.cnki.cst.2021.01.005.
  • Ren, W.-X., Q. Guo, and -H.-H. Yang. 2019. Analyses and prevention of coal spontaneous combustion risk in gobs of coal mine during withdrawal period. Geomatics Nat. Hazards Risk 10 (1):353–67. doi:10.1080/19475705.2018.1523237.
  • Schmal, D., J. H. Duyzer, and J. W. van Heuven. 1985. A model for the spontaneous heating of coal. Fuel 64 (7):963–72. doi:10.1016/0016-2361(85)90152-8.
  • Song, Y., S. Yang, X. Hu, W. Song, N. Sang, J. Cai, and Q. Xu. 2019. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Safety Environ. Prot. 129:8–16. doi:10.1016/j.psep.2019.06.013.
  • Tang, Z., S. Yang, G. Xu, and M. Sharifzadeh. 2019. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Safety Environ. Prot. 132:182–88. doi:10.1016/j.psep.2019.09.036.
  • Tutak, M., and J. Brodny. 2017. Determination of particular endogenous fires hazard zones in goaf with caving of Longwall. IOP Conf. Ser.: Earth Environ. Sci. 95:042026 doi:10.1088/1755-1315/95/4/042026.
  • Wang, G., Wang, R., Wu, M. , Xin, L., Zhou, X., and Liu, C.2017. Prevention and control technology of harmful gas intrusion in close up coal seam under fire area. J. China Coal Soc. 42 (7):1765–75.
  • Wang, J., B. Zhou, An, B. , and Tang, Y.2018. Application of Trinity” prediction of spontaneous combustion area in goaf of Huangbaici Mine LI. J. China Coal Soc. 43 (S1):178–84. doi:10.13225/jcnkijccs.2017.1129.
  • Wen, H., Yu, Z. , Zhai, X. , Liu, L., and Zhao, J.2015. Crack development and interconnected characteristics of closely spaced shallow coal seams under overlapping mining. Safety Coal Mines 46 (12):46–49+53.
  • Yang, S., B. Zhou, and C. Wang. 2021. Investigation on coal spontaneous combustion in the gob of Y type ventialtion caving face: A case study. Process Safety Environ. Prot. 148:590–603. doi:10.1016/j.psep.2020.11.024.
  • Yang, S., Zhang, R., Chi, Z., Zhang, Y., and Wang, C. 2000. Distribution pattern of spontaneous combustion three zones in goaf of fully mechanized mining face. China Univ. Min Technol. 29 (1):93-96.
  • Zhang. 2020. Limit parameter changes and hazardous area determination of residual coal spontaneous combustion in compound goaf [J]. Min. Safety Environ. Prot. 47 (4):66–72.
  • Zhao, J., J. Deng, T. Wang, J. Song, Y. Zhang, C.-M. Shu, and Q. Zeng. 2019. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169:587–96. doi:10.1016/j.energy.2018.12.100.
  • Zhao, Y., Q. Qi, and X. Jia. 2021. Prediction model for spontaneous combustion of coal around boreholes using bedding gas drainage. Shock Vib. (2021:5533054
  • Zheng, Y., Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, and X. Li. 2021. Study on the coupling evolution of air and temperature field in coal mine goafs based on the similarity simulation experiments. Fuel 283:118905. doi:10.1016/j.fuel.2020.118905.
  • Zheng, Y., Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, and X. Liu. 2020. Effect of multi-component gases competitive adsorption on coal spontaneous combustion characteristics under goaf conditions. Fuel Process. Technol. 208:106510. doi: 10.1016/j.fuproc.2020.106510
  • Zhou, X., Y. Yang, K. Zheng, G. Miao, M. Wang, and P. Li. 2021. Study on the spontaneous combustion characteristics and prevention technology of coal seam in overlying close goaf. Combust. Sci. Technol.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.