420
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental study of combustion characteristics of lean LPG/air mixture in Porous Media Burner

, ORCID Icon, &
Pages 2053-2069 | Received 02 Aug 2021, Accepted 14 Nov 2021, Published online: 29 Nov 2021

References

  • Alipoor, A., and K. Mazaheri. 2016. Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel. Energy 109:650–63. doi:10.1016/j.energy.2016.05.042.
  • Barra, A., G. Diepvens, J. Ellzey, and M. Henneke. 2003. Numerical study of the effects of material properties on flame stabilization in a porous burner. Combust. Flame 134 (4):369–79. doi:10.1016/S0010-2180(03)00125-1.
  • Barra, A. J., and J. L. Ellzey. 2004. Heat recirculation and heat transfer in porous burners. Combust. Flame 137 (1–2):230–41. doi:10.1016/j.combustflame.2004.02.007.
  • Colorado, A., and V. McDonell. 2018. Surface stabilized combustion technology: An experimental evaluation of the extent of its fuel-flexibility and pollutant emissions using low and high calorific value fuels. Appl. Therm. Eng. 136:206–18. doi:10.1016/j.applthermaleng.2018.02.081.
  • Dai, H., B. Lin, K. Ji, C. Wang, Q. Li, Y. W. K. Zheng, and K. Wang. 2015a. Combustion characteristics of low-concentration coal mine methane in ceramic foam burner with embedded alumina pellets. Appl. Therm. Eng. 90:489–98. doi:10.1016/j.applthermaleng.2015.07.029.
  • Dai, H., B. Lin, C. Zhai, Y. Hong, and Q. Li. 2015b. Subadiabatic combustion of premixed gas in ceramic foam burner, Int. J. Heat Mass Transfer 91:318–29. doi:10.1016/j.ijheatmasstransfer.2015.07.122.
  • Fu, X., R. Viskanta, and J. P. Gore. 1998. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Exp. Therm Fluid Sci. 17 (4):285–93. doi:10.1016/S0894-1777(98)10002-X.
  • Gao, H., Z. Qu, Y. He, and W. Tao. 2012. Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters. Appl. Energy 100:295–302. doi:10.1016/j.apenergy.2012.05.019.
  • Gao, H. B., Z. G. Qu, X. B. Feng, and W. Q. Tao. 2014. Methane/air premixed combustion in a two-layer porous burner with different foam materials. Fuel 115:154–61. doi:10.1016/j.fuel.2013.06.023.
  • Keramiotis, C., B. Stelzner, D. Trimis, and M. Founti. 2012. Porous burners for low emission combustion: An experimental investigation. Energy 45 (1):213–19. doi:10.1016/j.energy.2011.12.006.
  • Kim, N. K. S., T. Kataoka, T. Yokomori, S. Maruyama, T. K. M. Fujimori, and K. Maruta. 2005. Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141 (3):229–40. doi:10.1016/j.combustflame.2005.01.006.
  • Lee, M., S. Cho, B. Choi, and N. Kim. 2010. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type. Appl. Therm. Eng. 30 (14–15):2227–35. doi:10.1016/j.applthermaleng.2010.06.003.
  • Li, J., S. K. Chou, Z. W. Li, and W. M. Yang. 2009. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combust. Flame 156 (8):1587–93. doi:10.1016/j.combustflame.2009.05.003.
  • Li, J., J. Huang, X. Chen, M. Yan, D. Zhao, Z. Wei, and N. Wang. 2017. Experimental Study on Flame Stability and Thermal Performance of an n-heptane-fueled Microscale Combustor. Combust. Sci. Technol. 189 (7):1198–215. doi:10.1080/00102202.2017.1279154.
  • Liang, X., Y. Li, L. Pan, T. Zhu, Q. Wang, B. Li, and C. Aneziris. 2019. Fracture Behavior of Mullite Reticulated Porous Ceramics for Porous Media Combustion. Front. Chem. 7:792. doi:10.3389/fchem.2019.00792.
  • Liu, J. F., and W. H. Hsieh. 2004. Experimental investigation of combustion in porous heating burners. Combust. Flame 138 (3):295–303. doi:10.1016/j.combustflame.2004.06.003.
  • Mendes, M. A. A., J. M. C. Pereira, and J. C. F. Pereira. 2008. A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media. Combustion and Flame 153 (4):525–39. doi:10.1016/j.combustflame.2008.03.010.
  • Min, D., and H. Shin. 1991. Laminar premixed flame stabilized inside a honeycomb ceramic. Int. J. Heat Mass Transfer 34 (2):341–56. doi:10.1016/0017-9310(91)90255-D.
  • Mujeebu, M. A., M. Z. Abdullah, M. Z. A. Bakar, A. A. Mohamad, and M. K. Abdullah. 2009. A review of investigations on liquid fuel combustion in porous inert media. Prog. Energy Combust. Sci. 35 (2):216–30. doi:10.1016/j.pecs.2008.11.001.
  • Muthukumar, P., and P. I. Shyamkumar. 2013. Development of novel porous radiant burners for LPG cooking applications. Fuel 112:562–66. doi:10.1016/j.fuel.2011.09.006.
  • Panigrahy, S., and S. C. Mishra. 2018. The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy 150:176–89. doi:10.1016/j.energy.2018.02.121.
  • Peng, Q. E. J., W. M. Yang, H. Xu, and R. Chen. 2019. Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses. Energy 173:540–47. doi:10.1016/j.energy.2019.02.093.
  • Shi, J., M. Xie, Z. Xue, Y. Xu, and H. Liu. 2012. Experimental and numerical studies on inclined flame evolution in packing bed. Int. J. Heat Mass Transfer 55 (23–24):7063–71. doi:10.1016/j.ijheatmasstransfer.2012.07.020.
  • Smucker, M., and J. Ellzey. 2004. Computational and experimental study of a two-section porous burner. Combust. Sci. Technol. 176 (8):1171–89. doi:10.1080/00102200490457385.
  • Taywade, U. W., A. A. Deshpande, and S. Kumar. 2013. Thermal performance of a micro combustor with heat recirculation. Fuel Processing Technology 109:179–88. doi:10.1016/j.fuproc.2012.11.002.
  • Trimis, D., and F. Durst. 1996. Combustion in a porous medium-advances and applications. Comb. Sci. Tech. 121 (1–6):153–68. doi:10.1080/00102209608935592.
  • Wan, J., and H. Zhao. 2018. Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels. Energy 157:448–59. doi:10.1016/j.energy.2018.05.189.
  • Wang, H., C. Wei, P. Zhao, and T. Ye. 2014. Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion. Energy 72:195–200. doi:10.1016/j.energy.2014.05.024.
  • Wang, W., Z. Zuo, and J. Liu. 2019. Experimental study and numerical analysis of the scaling effect on the flame stabilization of propane/air mixture in the micro-scale porous combustor. Energy 174:509–18. doi:10.1016/j.energy.2019.02.123.
  • Wasinarom, K., J. Charoensuk, and V. Lilavivat. 2019. Non-equilibrium numerical modeling for combustion of LPG within porous media. Int. J. Heat Mass Transfer 143:118551. doi:10.1016/j.ijheatmasstransfer.2019.118551.
  • Wood, S., and A. Harris. 2008. Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34 (5):667–84. doi:10.1016/j.pecs.2008.04.003.
  • Wu, Z., C. Caliot, F. Bai, G. Flamant, Z. Wang, J. Zhang, and C. Tian. 2010. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Appl. Energy 87 (2):504–13. doi:10.1016/j.apenergy.2009.08.009.
  • Wu, Z., C. Caliot, G. Flamant, and Z. Wang. 2011. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. Int. J. Heat Mass Transfer 54 (7–8):1527–37. doi:10.1016/j.ijheatmasstransfer.2010.11.037.
  • Yu, B., S. M. Kum, C. E. Lee, and S. Lee. 2013. Combustion characteristics and thermal efficiency for premixed porous-media types of burners. Energy 53:343–50. doi:10.1016/j.energy.2013.02.035.
  • Zhdanok, S., L. A. Kennedy, and G. Koester. 1995. Superadiabatic combustion of methane air mixtures under filtration in a packed bed, Combust. Flame 100 (1–2):221–31. doi:10.1016/0010-2180(94)00064-Y.
  • Zheng, C., L. Cheng, A. Saveliev, Z. Luo, and K. Cen. 2011. Gas and solid phase temperature measurements of porous media combustion. Proc. Combust. Inst. 33 (2):3301–08. doi:10.1016/j.proci.2010.05.037.
  • Zhou, C., A. Tang, T. Cai, D. Zhao, and Q. Huang. 2021. Numerical study on flame shape transition and structure characteristic of premixed CH 4 /H 2 -air in the micro-planar combustor. Chemical Engineering & Processing: Process Intensification 166:108460. doi:10.1016/j.cep.2021.108460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.