298
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combustion Characteristics and Mechanisms of Two Gun Barrel Steels by Promoted Ignition Combustion

ORCID Icon, , , , &
Pages 2070-2084 | Received 11 Sep 2021, Accepted 16 Nov 2021, Published online: 29 Nov 2021

References

  • ASTM G94-05. 2014. Standard guide for evaluating metals for oxygen service. West Conshohochen, PA: Annual Book of ASTM Standards, ASTM International.
  • Benz, F. J., J. M. Stoltzfus, and M. A. Benning, Ed. 1986b. Flammability and sensitivity of materials in oxygen-enriched atmospheres: second volume. 38. PA: ASTM international. doi:10.1520/STP19308S.
  • Benz, F. J., R. E. Williams, and D. Armstriong. 1986a. Flammability and sensitivity of materials in oxygen-enriched atmosphere, P.16. DC: ASTM. doi:10.1520/STP19307S.
  • Bolobov, V. I. 2001. Conditions for ignition of iron and carbon steel in oxygen. Combust., Explo Shock Waves 37 (3):292–96. doi:10.1023/A:1017523922778.
  • Calderon, R. O., G. M. Christian, and H. Danninger. 2017. Application of thermal analysis techniques to study the oxidation reduction phenomena during sintering of steels containing oxygen sensitive alloying elements. J. Therm. Anal. Calorim. 127:91–105. doi:10.1007/s10973-016-5508-5.
  • Chen, Y., W. Yang, A. Bo, H. Zhan, F. Zhang, Y. Zhao, Q. Zhao, M. Wan, and Y. Gu. 2018. Underlying burning resistant mechanisms for titanium alloy. Mater. Des. 156:588–95. doi:10.1016/j.matdes.2018.07.025.
  • Chung, D., H. Kong, and S. Nam. 1999. A study on the precision wear measurement for a high friction and high pressurized gun barrel by using a diamond indenter. Wear 225–229:1258–63. doi:10.1016/S0043-1648(99)00047-2.
  • Clark, A. F., and Hust, J. G. 1974. A review of the compatibility of structural materials with oxygen. AIAA Journal. 12 (4), 441–454. doi:10.2514/3.49267
  • Fan, Q., H. Chai, and Z. Jin. 2002. Effects of particle size of reactant on characteristics of combustion synthesis of TiC-Fe cermet. J. Mater. Sci. 37 (11):2251–57. doi:10.1023/A:1015313215455.
  • Gao, H. X., J. F. Huang, J. S. Zhang, J. Wang, H. L. Wu, and D. J. Jia. 2008. Formation and spalling of mechanism of white layer of rapid-firing gun steel. Heat Treat. Metals 109–13. doi:10.13251/j.0254-6051.2008.10.030.
  • Gunaji, M., S. Sircar, H. D. Beeson, D. Janoff, W. Royals, and M. Gunaji, eds. 1995. Flammability and sensitivity of materials in oxygen-enriched atmospheres: Seventh volume. P.81. PA: ASTM International. doi:10.1520/STP16428S.
  • Han, D., J. Zhang, J. F. Huang, Y. Lian, and G. Y. He. 2020. A review on ignition mechanisms and characteristics of magnesium alloys. J. Magnes. Alloy. 8:329–44. doi:10.1016/j.jma.2019.11.014.
  • Hermanson, M., P. Conolly, and W. Vezina. 2012. Development of technologies to apply refractory metals to large caliber gun bores. Mater. Manuf. Process. 27:892–99. doi:10.1080/10426914.2011.648701.
  • Hirano, T., K. Sato, Y. Sato, and J. Sato. 1983. Prediction of metal fire spread in high pressure oxygen. Combust. Sci. Technol. 32:137–59. doi:10.1080/00102208308923656.
  • Hust, J. G., and A. F. Clark. 1973. A survey of compatibility of materials with high pressure oxygen service. Cryogenics 13:325–36. doi:10.1016/0011-2275(73)90057-X.
  • Johnston, I. A. 2005. Understanding and predicting gun barrel erosion. Edinburgh: Defence Science and Technology Organisation, Weapons systems Division.
  • Kim, Y. M., C. D. Yim, H. S. Kim, and B. S. You. 2011. Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures. Scr. Mater. 65:958–61. doi:10.1016/j.scriptamat.2011.08.019.
  • Littman, F. E., F. M. Church, and E. M. Kinderman. 1961. A study of metal ignitions I. The spontaneous ignition of titanium. J. Les. Comm. Metals 3:367–78. doi:10.1016/0022-5088(61)90012-1.
  • Sato, J., H. Ohtani, and T. Hirano. 1995. Ignition process of a heated iron block in high-pressure oxygen atmosphere. Combust. Flame 100:376–83. doi:10.1016/0010-2180(94)00090-F.
  • Sato, J., T. Hirano, and M. A. Benning, ed. 1986. Flammability and sensitivity of materials in oxygen-enriched atmospheres: second volume. 118. PA: ASTM International. doi:10.1520/STP19313S.
  • Shao, L., G. L. Xie, C. Zhang, X. Liu, W. R. Lu, G. Y. He, and J. F. Huang. 2020a. Combustion of metals in oxygen‐enriched atmospheres. Metals 10:128. doi:10.3390/met10010128.
  • Shao, L., G. L. Xie, X. H. Liu, Y. Wu, J. B. Yu, and Y. Y. Wang. 2020b. Combustion behaviour and mechanism of a Cu-Ni-Mn alloy in an oxygen enriched atmosphere. Corros. Sci. 163:108253. doi:10.1016/j.corsci.2019.108253.
  • Shao, L., Y. Y. Wang, G. L. Xie, H. Y. Li, J. S. Xiong, J. B. Yu, G. Y. He, and J. F. Huang. 2019. Combustion mechanism of alloying elements Cr in Ti-Cr-V alloys. Mater. 12:3206–16. doi:10.3390/ma12193206.
  • Steinberg, T., M. Rucker, H. Beeson, J. Stoltzfus, J. Stradling, and F. Benz, eds. 1989. Flammability and sensitivity of materials in oxygen-enriched atmospheres: Fourth volume. 54. PA: ASTM International. doi:10.1520/STP24920S.
  • Tayal, M., D. B. Wilson, J. M. Stoltzfus, W. T. Royals, T. C. Chou, and T. A. Steinberg, eds. 1997. Flammability and sensitivity of materials in oxygen enriched atmospheres: Eighth Volume. P.189. PA: ASTM International. doi:10.1520/STP12054S.
  • Underwood, J. H., G. N. Vigilante, and C. P. Mulligan. 2007. Review of thermo-mechanical cracking and wear mechanisms in large caliber guns. Wear 263:1616–21. doi:10.1016/j.wear.2006.12.005.
  • Wang, H. L., J. F. Huang, Y. Lian, C. Zhang, Q. M. Zhou, S. K. Li, and T. Xuan. 2016. Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched atmosphere. Chin. J. Eng. 38:1288–95. doi:10.13374/j.2095-9389.2016.09.013.
  • Wit, J. D., T. Steinberg, J. Haas, T. Steinberg, B. Newton, and H. Beeson, ed. 2000. Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Ninth Volume, T. (West Conshohocken. 179. PA: ASTM International. doi:10.1520/STP12495S.
  • Zawierucha, R., R. F. Drnevich, K. Mcilroy, T. R. Schulte, and D. W. Schroll, ed. 1987. Flammability and sensitivity of materials in oxygen-enriched atmospheres: Third volume. 328. PA: ASTM International. doi:10.1520/STP26758S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.