270
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on spark ignition of laminar lean premixed methane-air flames in counterflow configuration

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2085-2109 | Received 21 Oct 2021, Accepted 17 Nov 2021, Published online: 26 Dec 2021

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2016. Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane. J. Loss Prev. Process Ind. 40:207–16. doi:10.1016/j.jlp.2015.12.014.
  • Bagade, M. J., H. Das, S. J. Dhinagar, and A. Deterministic Method for real time detection of misfire for smaller capacity spark ignition engine. Technical report, SAE Technical Paper, 2021.
  • Bane, S., J. Ziegler, P. Boettcher, S. Coronel, and J. Shepherd. 2013. Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen. J. Loss Prev. Process Ind. 260 (2):290–94. doi:10.1016/j.jlp.2011.03.007.
  • Bongers, H., and L. De Goey. 2003. The effect of simplified transport modeling on the burning velocity of laminar premixed flames. Combust. Sci. Technol. 1750 (10):1915–28. doi:10.1080/713713111.
  • Bouillard, J., A. Vignes, O. Dufaud, L. Perrin, and D. Thomas. 2010. Ignition and explosion risks of nanopowders. J. Hazard. Mater. 1810 (1–3):873–80. doi:10.1016/j.jhazmat.2010.05.094.
  • Brewster, B. S., S. M. Cannon, J. R. Farmer, and F. Meng. 1999. Modeling of lean premixed combustion in stationary gas turbines. Prog. Energy Combust. Sci. 250 (4):353–85. doi:10.1016/S0360-1285(98)00014-8.
  • Cai, L., S. Kruse, D. Felsmann, and H. Pitsch. 2021. A methane mechanism for oxy-fuel combustion: extinction experiments, model validation, and kinetic analysis. Flow, Turbulence Combust. 1060 (2):499–514. doi:10.1007/s10494-020-00138-w.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2013. Extinction of laminar, premixed, counter-flow methane/air flames under unsteady conditions: Effect of H2 addition. Chem. Eng. Sci. 93:266–76. doi:10.1016/j.ces.2013.02.009.
  • Deng, F., F. Yang, P. Zhang, Y. Pan, Y. Zhang, and Z. Huang. 2016. Ignition delay time and chemical kinetic study of methane and nitrous oxide mixtures at high temperatures. Energy Fuels 300 (2):1415–27.
  • Deuflhard, P., and U. Nowak. 1987. Extrapolation integrators for quasilinear implicit ODEs. In Large scale scientific computing, 37–50. Springer.
  • Ern, A., and V. Giovangigli. 1998. Thermal diffusion effects in hydrogen-air and methane-air flames. Combust. Theory Modell. 20 (4):349. doi:10.1088/1364-7830/2/4/001.
  • Fisher, F. A. 2000. Some notes on sparks and ignition of fuels. Langley Research Center: National Aeronautics and Space Administration.
  • Fotache, C., T. Kreutz, and C. K. Law. 1997. Ignition of hydrogen-enriched methane by heated air. Combust. Flame 1100 (4):429–40. doi:10.1016/S0010-2180(97)00084-9.
  • Fotache, C., T. Kreutz, D. Zhu, and C. K. Law. 1995. An experimental study of ignition in nonpremixed counterflowing hydrogen versus heated air. Combust. Sci. Technol. 1090 (1–6):373–93. doi:10.1080/00102209508951910.
  • Guo, H., G. J. Smallwood, F. Liu, Y. Ju, and Ö. L. Gülder. 2005. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 300 (1):303–11. doi:10.1016/j.proci.2004.08.177.
  • Hirschfelder, J. O., C. F. Curtiss, R. B. Bird, and M. G. Mayer. 1964. Molecular theory of gases and liquids, Vol. 165. New York: Wiley.
  • Hu, E., X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, and Z. Huang. 2015. Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel 158:1–10. doi:10.1016/j.fuel.2015.05.010.
  • Huang, C., S. Shy, C. Liu, and Y. Yan. 2007. A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proc. Combust. Inst. 310 (1):1401–09. doi:10.1016/j.proci.2006.08.024.
  • Ishizaka, K., Y. Kawata, S. Takiguchi, and S. Tanimura Premixed combustion burner for gas turbine, November. 29 2011. US Patent 8,065,880.
  • Ji, C., D. Wang, J. Yang, and S. Wang. 2017. A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities. Int. J. Hydrogen Energy 420 (27):17260–74. doi:10.1016/j.ijhydene.2017.05.203.
  • Jiang, L. J., S. S. Shy, M. T. Nguyen, S. Y. Huang, et al. 2018. Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion. Combust. Flame 187:0:87–95. doi:10.1016/j.combustflame.2017.09.006.
  • Ju, Y., H. Guo, K. Maruta, and F. Liu. 1997. On the extinction limit and flammability limit of non-adiabatic stretched methane–air premixed flames. J. Fluid Mech. 342:315–34. doi:10.1017/S0022112097005636.
  • Koroglu, B., O. M. Pryor, J. Lopez, L. Nash, and S. S. Vasu. 2016. Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion. Combust. Flame 164:152–63. doi:10.1016/j.combustflame.2015.11.011.
  • Kreutz, T., and C. Law. 1996. Ignition in nonpremixed counterflowing hydrogen versus heated air: Computational study with detailed chemistry. Combust. Flame 1040 (1–2):157–75. doi:10.1016/0010-2180(95)00121-2.
  • Kummer, J.-R., S. Essmann, D. Markus, H. Grosshans, and U. Maas. 2021. Assessing ignitions of explosive gas mixtures by low-energetic electrical discharges using OH-LIF and 1D-simulations. Combust. Sci. Technol. 1–23. doi:10.1080/00102202.2021.1931153.
  • Law, C. K. 2010. Combustion physics. Cambridge university press.
  • Li, J., X. Wang, J. Guo, J. Zhang, and S. Zhang. 2020. Effect of concentration and ignition position on vented methane–air explosions. J. Loss Prev. Process Ind. 68:104334. doi:10.1016/j.jlp.2020.104334.
  • Lieuwen, T. C. 2012. Unsteady combustor physics. Cambridge University Press.
  • Ma, Q., Q. Zhang, J. Chen, Y. Huang, and Y. Shi. 2014. Effects of hydrogen on combustion characteristics of methane in air. Int. J. Hydrogen Energy 390 (21):11291–98. doi:10.1016/j.ijhydene.2014.05.030.
  • Maas, U., B. Raffel, J. Wolfrum, and J. Warnatz. 1988. Observation and simulation of laser induced ignition processes in O2- O3 and H2- O2 mixtures. Symp. (Int.) Combust. 21:1869–76. Elsevier. doi:10.1016/S0082-0784(88)80422-3.
  • Maas, U., and J. Warnatz. 1988a. Ignition processes in hydrogen- oxygen mixtures. Combust. Flame 740 (1):53–69. doi:10.1016/0010-2180(88)90086-7.
  • Maas, U., and J. Warnatz. 1988b. Ignition processes in hydrogen-oxygen mixtures and the influence of the uniform pressure assumption. In Dynamics of reactive systems part I: Flames; Part II: Heterogeneous combustion and applications, A. L. Kuhl, J. R. Bowen, A. Borisov, and J.-C. Leyer, ed. 3–18. Washington DC: American Institute of Aeronautics and Astronautics. doi:10.2514/5.9781600865879.0003.0018.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 350 (1):57–97.
  • Pio, G., and E. Salzano. 2018. Laminar burning velocity of methane, hydrogen, and their mixtures at extremely low-temperature conditions. Energy Fuels 320 (8):8830–36. doi:10.1021/acs.energyfuels.8b01796.
  • Richardson, E., and E. Mastorakos. 2007. Numerical investigation of forced ignition in laminar counterflow non-premixed methane-air flames. Combust. Sci. Technol. 1790 (1–2):21–37. doi:10.1080/00102200600805892.
  • Shao, J., D. F. Davidson, and R. K. Hanson. 2018. A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures. Fuel 225:370–80. doi:10.1016/j.fuel.2018.03.146.
  • Smith, G., Y. Tao, and H. Wang, 2016. Foundational fuel chemistry model version 1.0 (FFCM-1). http://nanoenergy.stanford.edu/ffcm1,2016.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, et al. 1999. GRI 3.0 mechanism. Gas Research Institute. http://www.me.berkeley.edu/gri_mech
  • Stahl, G., and J. Warnatz. 1991. Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets. Combust. Flame 850 (3–4):285–99. doi:10.1016/0010-2180(91)90134-W.
  • Su, J., Y. Wu, Y. Wang, X. Chen, and Z. Chen. 2020. Skeletal and reduced kinetic models for methane oxidation under engine-relevant conditions. Fuel 119667.
  • Tao, Y., G. P. Smith, and H. Wang. 2018. Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion. Combust. Flame 195:18–29. doi:10.1016/j.combustflame.2018.02.006.
  • Taylor, C. F. 1985. The internal-combustion engine in theory and practice: Combustion, fuels, materials, design, Vol. 2. MIT press.
  • Thiele, M., J. Warnatz, and U. Maas. 2000. Geometrical study of spark ignition in two dimensions. Combust. Theory Modell. 40 (4):413. doi:10.1088/1364-7830/4/4/303.
  • UCSD. 2014. Chemical-kinetic mechanisms for combustion applications, San Diego mechanism webpage,mechanical and aerospace engineering (combustion research). University of California. http://combustion.ucsd.edu
  • Varghese, R. J., H. Kolekar, V. R. Kishore, and S. Kumar. 2019. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel 257:116120. doi:10.1016/j.fuel.2019.116120.
  • Warnatz, J. 1992. Resolution of gas phase and surface combustion chemistry into elementary reactions. Symp. (Int.) Combust. 24:553–79. Elsevier. doi:10.1016/S0082-0784(06)80070-6.
  • Warnatz, J., U. Maas, R. W. Dibble, and J. Warnatz. 2006. Combustion. Springer-Verlag Berlin Heidelberg.
  • Williams, F. A. 2018. Combustion theory. CRC Press.
  • Xie, S., Z. Lu, and Z. Chen. 2021. Effects of strain rate and Lewis number on forced ignition of laminar counterflow diffusion flames. Combust. Flame 226:302–14. doi:10.1016/j.combustflame.2020.12.027.
  • Zhang, Y., J. Fu, J. Shu, M. Xie, J. Liu, T. Jiang, Z. Peng, and B. Deng. 2019. Numerical study on auto-ignition characteristics of hydrogen-enriched methane under engine-relevant conditions. Energy Convers. Manage. 200:112092. doi:10.1016/j.enconman.2019.112092.
  • Zhang, Y., Z. Huang, L. Wei, J. Zhang, and C. K. Law. 2012. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame 1590 (3):918–31. doi:10.1016/j.combustflame.2011.09.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.