194
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study on coal dust ignition temperature characteristics and explosion propagation characteristics in confined space

, , , , &
Pages 2150-2164 | Received 16 Jul 2021, Accepted 21 Nov 2021, Published online: 01 Dec 2021

References

  • Amyotte, R. P., and R. K. Eckhoff. 2010. Dust explosion causation, prevention and mitigation: An overview. J. Chem. Health Saf. 17:15–28. doi:10.1016/j.jchas.2009.05.002.
  • Cao, W. G., W. Cao, and J. Y. Liang. 2014. Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions. J. Loss Prev. Process Ind. 29:65–71. doi:10.1016/j.jlp.2014.02.002.
  • Cao, W. G., W. Cao, and Y. H. Peng. 2015. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust. Powder Technol. 283:512–18. doi:10.1016/j.powtec.2015.06.025.
  • Cao, W. G., W. Gao, and Y. H. Peng. 2014. Experimental and numerical study on flame propagation behaviors in coal dust explosions. Powder Technol. 266:456–62. doi:10.1016/j.powtec.2014.06.063.
  • Cao, W. G., Q. F. Qin, and W. Cao. 2017. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel. Powder Technol. 310:17–23.
  • Eckhoff, R. K. 2005. Current status and expected future trends in dust explosion research. J. Loss Prev. Process Ind. 18:225–37. doi:10.1016/j.jlp.2005.06.012.
  • Eckhoff, R. K. 2009. Understanding dust explosions. The role of powder science and technology. J. Loss Prev. Process Ind. 22:105–16. doi:10.1016/j.jlp.2008.07.006.
  • Emami, S. D., S. Z. Sulaiman, and R. M. Kasmani. 2016. Effect of pipe configurations on flame propagation of hydrocarbons-air and hydrogenair mixtures in a constant volume. J. Loss Prev. Process. Ind. 39:141–51. doi:10.1016/j.jlp.2015.11.005.
  • Gao, W., T. Mogi, and J. H. Sun. 2012. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber. Fuel 113:86–96. doi:10.1016/j.fuel.2013.05.071.
  • Gao, W., T. Mogi, and J. H. Sun. 2013. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions. Powder Technol. 249:168–74. doi:10.1016/j.powtec.2013.08.007.
  • Giovangigli, V., and M. D. Smooke. 1987. Extinction of strained premixed laminar flames with complex chemistry. Combust. Sci. Technol. 53:23–49. doi:10.1080/00102208708947017.
  • Joseph, G. E. 2007. Combustible dusts: A serious industrial hazard. J. Hazard. Mater. 142:589–91. doi:10.1016/j.jhazmat.2006.06.127.
  • Kosinski, P., and A. Hoffmann. 2006. An investigation of the consequences of primary dust explosions in interconnected vessels. J. Hazard. Mater. 137:752–61. doi:10.1016/j.jhazmat.2006.04.029.
  • Lauder, B. E., and D. B. Spalding. 1974. The numerical computation of turbulent flows. Comput. Method Appl. Mech. Eng. 3:269–89. doi:10.1016/0045-7825(74)90029-2.
  • Li, G., Y. Du, and S. Qi. 2016. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure. J. Loss Prev. Process. Ind. 43:529–36. doi:10.1016/j.jlp.2016.07.022.
  • Oran, E. S. 2015. Structure and flame speed of dilute and dense layered coal-dust explosions. J. Loss Prev. Process Ind. 36:214–22. doi:10.1016/j.jlp.2015.01.015.
  • Shah, T. H., W. W. Liou, and A. E. Shabbir. 1995. A new k-ε Eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput. Fluids. 24:227–38. doi:10.1016/0045-7930(94)00032-T.
  • Song, Y. F., Q. Zhang, and W. W. Wu. 2017. Interaction between gas explosion flame and deposited dust. Process Saf. Environ. Protect. 111:775–84. doi:10.1016/j.psep.2017.09.004.
  • Wang, K., S. G. Jiang, and X. P. Ma. 2015. Study of the destruction of ventilation systems in coal mines due to gas explosions. Powder Technol. 286:401–11. doi:10.1016/j.powtec.2015.08.020.
  • Xin, H. H., D. M. Wang, and G. L. Dou. 2014. The infrared characterization and mechanism of oxygen adsorption in coal. Spectrosc. Lett. 47:664–75. doi:10.1080/00387010.2013.833940.
  • Yan, X. Q., and J. L. Yu. 2014. Dust explosion venting of small vessels at the elevated static activation overpressure. Powder Technol. 261:250–56. doi:10.1016/j.powtec.2014.04.043.
  • Yin, Y., J. H. Sun, and Y. B. Ding. 2009. Experimental study on flames propagating through zirconium particle clouds. J. Hazard. Mater. 170:340–44. doi:10.1016/j.jhazmat.2009.04.098.
  • Zhang, C. Y., and X. F. Sun. 2010. Numerical simulation on vortex shedding and combustion oscillation in aero-engine afterburner. J. Aerosp. Power. 25:270–77.
  • Zhang, P., Y. Du, and Y. Zhou. 2013. Explosions of gasoline-air mixture in the tunnels containing branch configuration. J. Loss Prev. Process. Ind. 26:1279–84. doi:10.1016/j.jlp.2013.07.003.
  • Zhou, J. H., H. P. Jiang, and Y. H. Zhou. 2019. Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size. Process Saf. Environ. Protect. 132:303–12. doi:10.1016/j.psep.2019.10.027.
  • Zhu, C., Z. Gao, and X. Lu. 2017. Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts. J. Loss Prev. Process. Ind. 49:545–50. doi:10.1016/j.jlp.2017.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.