328
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Chemical and Sooting Structures of Counterflow Diffusion Flames of Butanol Isomers: An Experimental and Modeling Study

, , , & ORCID Icon
Pages 2165-2190 | Received 14 Aug 2021, Accepted 21 Nov 2021, Published online: 08 Dec 2021

References

  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame 121:122–36.
  • Armas, O., R. García-Contreras, and Á. Ramos. 2012. Pollutant emissions from engine starting with ethanol and butanol diesel blends. Fuel Process. Technol. 100:63–72.
  • Armas, O., R. García-Contreras, and Á. Ramos. 2014. Pollutant emissions from new European driving cycle with ethanol and butanol diesel blends. Fuel Process. Technol. 122:64–71.
  • Bhargava, A., and P. R. Westmoreland. 1998. Measured flame structure and kinetics in a fuel-rich ethylene flame. Combust. Flame 113:333–47.
  • Bouvet, N., D. Davidenko, C. Chauveau, L. Pillier, and Y. Yoon. 2014. On the simulation of laminar strained flames in stagnation flows: 1D and 2D approaches versus experiments. Combust. Flame 161:438–52.
  • Bystrov, N., A. Emelianov, A. Eremin, B. Loukhovitski, A. Sharipov, and P. Yatsenko. 2020. Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane. Combust. Flame 218:121–33.
  • Camacho, J., S. Lieb, and H. Wang. 2013. Evolution of size distribution of nascent soot in n- and i-butanol flames. Proc. Combust. Inst. 34:1853–60.
  • Chemkin Pro Ver. 15131. 2014. Reaction design. San Diego.
  • Chen, B., X. Liu, H. Liu, H. Wang, D. C. Kyritsis, and M. Yao. 2017. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame 177:123–36.
  • Choi, J. H., B. C. Choi, S. M. Lee, S. H. Chung, K. S. Jung, W. L. Jeong, S. K. Choi, and S. K. Park. 2015. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames. J. Mech. Sci. Technol. 29:2259–67.
  • Dalili, A., J. D. Brunson, S. Guo, M. Turello, F. Pizzetti, L. Badiali, C. T. Avedisian, K. Seshadri, A. Cuoci, F. A. Williams, et al. 2020. The role of composition in the combustion of n-heptane/iso-butanol mixtures: Experiments and detailed modelling. Combust. Theory Modell. 24:1002–20.
  • Dasch, C. J. 1992. One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31:1146–52.
  • Hashimoto, J., K. Tanoue, N. Taide, and Y. Nouno. 2015. Extinction limits and flame structures of 1-butanol and diethyl ether non-premixed flames. Proc. Combust. Inst. 35:973–80.
  • Hua, Y., F. Liu, H. Wu, C.-F. Lee, and Y. Li. 2020. Effects of alcohol addition to traditional fuels on soot formation: A review. Int. J. Engine Res. 22:1395–420.
  • Hwang, J. Y., and S. H. Chung. 2001. Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame 125:752–62.
  • Hwang, J. Y., W. Lee, H. G. Kang, and S. H. Chung. 1998. Synergistic effect of ethylene–Propane mixture on soot formation in laminar diffusion flames. Combust. Flame 114:370–80.
  • Jin, H., A. Cuoci, A. Frassoldati, T. Faravelli, Y. Wang, Y. Li, and F. Qi. 2014. Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combust. Flame 161:657–70.
  • Jin, H., G. Wang, Y. Wang, X. Zhang, Y. Li, Z. Zhou, J. Yang, and F. Qi. 2017. Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with iso -butanol. Proc. Combust. Inst. 36:1259–67.
  • Jin, H., J. Cai, G. Wang, Y. Wang, Y. Li, J. Yang, Z. Cheng, W. Yuan, and F. Qi. 2016. A comprehensive experimental and kinetic modeling study of tert-butanol combustion. Combust. Flame 169:154–70.
  • Jin, H., W. Yuan, Y. Wang, Y. Li, F. Qi, A. Cuoci, A. Frassoldati, and T. Faravelli. 2015. Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with 2-butanol. Proc. Combust. Inst. 35:863–71.
  • Jin, H., Y. Wang, K. Zhang, H. Guo, and F. Qi. 2013. An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols. Proc. Combust. Inst. 34:779–86.
  • Kang, K. T., J. Y. Hwang, S. H. Chung, and W. Lee. 1997. Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames. Combust. Flame 109:266–81.
  • Kumar, S., and D. Ramkrishna. 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci. 51:1311–32.
  • Lee, S. M., S. S. Yoon, and S. H. Chung. 2004. Synergistic effect on soot formation in counterflow diffusion flames of ethylene–propane mixtures with benzene addition. Combust. Flame 136:493–500.
  • Li, Z., H. M. F. Amin, P. Liu, Y. Wang, S. H. Chung, and W. L. Roberts. 2018. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combust. Flame 197:463–70.
  • Lipovsky, J., P. Patakova, L. Paulova, T. Pokorny, M. Rychtera, and K. Melzoch. 2016. Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Process. Technol. 144:139–44.
  • Litzinger, T., M. Colket, M. Kahandawala, S. Y. Lee, D. Liscinsky, K. McNesby, R. Pawlik, M. Roquemore, R. Santoro, S. Sidhu, et al. 2011. Fuel additive effects on soot across a suite of laboratory devices, part 2: Nitroalkanes. Combust. Sci. Technol. 183:739–54.
  • Liu, F., S. B. Dworkin, M. J. Thomson, and G. J. Smallwood. 2012. Modeling DME addition effects to fuel on pah and soot in laminar coflow ethylene/air diffusion flames using two PAH mechanisms. Combust. Sci. Technol. 184:966–79.
  • Liu, H., P. Zhang, X. Liu, B. Chen, C. Geng, B. Li, H. Wang, Z. Li, and M. Yao. 2018. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combust. Flame 188:129–41.
  • Liu, Y., X. Cheng, L. Qin, X. Wang, J. Yao, and H. Wu. 2020. Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames. Energy 211:118714.
  • McEnally, C. S., and L. D. Pfefferle. 2005. Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons: Butyl alcohols. Proc. Combust. Inst. 30:1363–70.
  • McEnally, C. S., and L. D. Pfefferle. 2011. Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames. Environ. Sci. Technol. 45:2498–503.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable Sustainable Energy Rev. 14:578–97.
  • Naseri, A., A. Veshkini, and M. J. Thomson. 2017. Detailed modeling of CO2 addition effects on the evolution of soot particle size distribution functions in premixed laminar ethylene flames. Combust. Flame 183:75–87.
  • Niemann, U., K. Seshadri, and F. A. Williams. 2015. Accuracies of laminar counterflow flame experiments. Combust. Flame 162:1540–49.
  • Oßwald, P., H. Güldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, and F. Qi. 2011. Combustion of butanol isomers – A detailed molecular beam mass spectrometry investigation of their flame chemistry. Combust. Flame 158:2–15.
  • Pejpichestakul, W., A. Frassoldati, A. Parente, and T. Faravelli. 2018. Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition. Fuel 234:199–206.
  • Ranzi, E., A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. P. Kelley, and C. K. Law. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38:468–501.
  • Russo, C., A. D’Anna, A. Ciajolo, and M. Sirignano. 2019. The effect of butanol isomers on the formation of carbon particulate matter in fuel-rich premixed ethylene flames. Combust. Flame 199:122–30.
  • Şahin, Z., and O. N. Aksu. 2015. Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine. Renewable Energy 77:279–90.
  • Salamanca, M., M. Sirignano, and A. D’Anna. 2012. Particulate formation in premixed and counter-flow diffusion ethylene/ethanol flames. Energy Fuels 26:6144–52.
  • Santoro, R. J., H. G. Semerjian, and R. A. Dobbins. 1983. Soot particle measurements in diffusion flames. Combust. Flame 51:203–18.
  • Sarathy, S. M., P. Oßwald, N. Hansen, and K. Kohse-Höinghaus. 2014. Alcohol combustion chemistry. Prog. Energy Combust. Sci 44:40–102.
  • Singh, P., and C. J. Sung. 2016. PAH formation in counterflow non-premixed flames of butane and butanol isomers. Combust. Flame 170:91–110.
  • Singh, P., X. Hui, and C.-J. Sung. 2016. Soot formation in non-premixed counterflow flames of butane and butanol isomers. Combust. Flame 164:167–82.
  • Sirignano, M., J. Kent, and A. D’Anna. 2013. Modeling formation and oxidation of soot in nonpremixed flames. Energy & Fuels 27:2303–15.
  • Sirignano, M., M. Salamanca, and A. D’Anna. 2014. The role of dimethyl ether as substituent to ethylene on particulate formation in premixed and counter-flow diffusion flames. Fuel 126:256–62.
  • Skeen, S. A., G. Yablonsky, and R. L. Axelbaum. 2010. Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames. Combust. Flame 157:1745–52.
  • Tan, Y. R., M. Salamanca, J. Bai, J. Akroyd, and M. Kraft. 2021a. Structural effects of C3 oxygenated fuels on soot formation in ethylene coflow diffusion flames. Combust. Flame 232 111512 .
  • Tan, Y. R., M. Salamanca, L. Pascazio, J. Akroyd, and M. Kraft. 2021b. The effect of poly(oxymethylene) dimethyl ethers (PODE3) on soot formation in ethylene/PODE3 laminar coflow diffusion flames. Fuel 283 118769 .
  • Veshkini, A., N. A. Eaves, S. B. Dworkin, and M. J. Thomson. 2016. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame 167:335–52.
  • Veza, I., M. F. M. Said, and Z. A. Latiff. 2019. Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Process. Technol. 196:106179.
  • Vinod Babu M., K Madhu Murthy, and G. Amba Prasad Rao. 2017. Butanol and pentanol: The promising biofuels for CI engines – A review. Renewable Sustainable Energy Rev. 78: 1068–88.
  • Viteri, F., S. Gracia, Á. Millera, R. Bilbao, and M. U. Alzueta. 2017. Polycyclic aromatic hydrocarbons (PAHs) and soot formation in the pyrolysis of the butanol isomers. Fuel 197:348–58.
  • Wang, H., R. D. Reitz, M. F. Yao, B. B. Yang, Q. Jiao, and L. Qiu. 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame 160:504–19.
  • Wang, W., L. Xu, J. Yan, and Y. Wang. 2020. Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames. Fuel 267 117121 .
  • Wang, Y., A. Raj, and S. H. Chung. 2013. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combust. Flame 160:1667–76.
  • Wang, Y., A. Raj, and S. H. Chung. 2015. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combust. Flame 162:586–96.
  • Wang, Y., and S. H. Chung. 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74:152–238.
  • Xu, L., F. Yan, M. Zhou, Y. Wang, and S. H. Chung. 2018. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combust. Flame 197:304–18.
  • Yan, F., L. Xu, Y. Wang, S. Park, S. M. Sarathy, and S. H. Chung. 2019a. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combust. Flame 202:228–42.
  • Yan, F., M. Zhou, L. Xu, Y. Wang, and S. H. Chung. 2019b. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Exp. Therm Fluid Sci. 100:259–70.
  • Yang, S. S., and Ö. L. Gülder. 2021. Sooting characteristics of ethanol-ethylene blends in laminar coflow diffusion flames up to 10 bar. Combust. Flame 225:39–47.
  • Yang, S., J. K. Lew, and M. E. Mueller. 2020. Large eddy simulation of soot evolution in turbulent reacting flows: Strain-sensitive transport approach for polycyclic aromatic hydrocarbons. Combust. Flame 220:219–34.
  • Ying, Y., and D. Liu. 2017. Effects of butanol isomers additions on soot nanostructure and reactivity in normal and inverse ethylene diffusion flames. Fuel 205:109–29.
  • Ying, Y., and D. Liu. 2021. Soot properties in ethylene inverse diffusion flames blended with different carbon chain length alcohols. Fuel 287:119520.
  • Zheng, Z., C. Li, H. Liu, Y. Zhang, X. Zhong, and M. Yao. 2015. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. Fuel 141:109–19.
  • Zhou, M., F. Yan, X. Zhong, L. Xu, and Y. Wang. 2021. Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel 291:120089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.