273
Views
1
CrossRef citations to date
0
Altmetric
Research Article

One new channel for the reduction of NO during gasification condition: An insight from DFT calculations

, , , , &
Pages 2191-2209 | Received 08 Sep 2021, Accepted 21 Nov 2021, Published online: 01 Dec 2021

References

  • Ashman, P. J., B. S. Haynes, P. M. Nicholls, and P. F. Nelson. 2000. Interactions of gaseous NO with char during the low-temperature oxidation of coal chars. Proc. Combust. Inst. 28 (2):2171–79. doi:10.1016/S0082-0784(00)80626-8.
  • Atakan, B., and J. Wolfrum. 1991. Kinetics studies of the reactions of NCO radicals with NO and O2 in the temperature range between 294 and 1260 K. Chem. Phys. Lett. 178 (2–3):157–62. doi:10.1016/0009-2614(91)87050-L.
  • Becker, K. H., H. Geiger, F. Schmidt, and P. Wiesen. 1999. Kinetic investigation of NCO radicals reacting with selected hydrocarbons. Phys. Chem. Chem. Phys. 1 (23):5305–09. doi:10.1039/a906351j.
  • Becker, K. H., R. Kurtenbach, F. Schmidt, and P. Wiesen. 2000. Kinetics of the NCO radical reacting with atoms and selected molecules. Combustion and Flame 120 (4):570–77. doi:10.1016/S0010-2180(99)00108-X.
  • Becker, K. H., R. Kurtenbach, and P. Wiesen. 1992. Investigation of N2O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy. Chem. Phys. Lett. 198:424–28.
  • Chen, C., J. Wang, W. Liu, S. Zhang, J. S. Yin, G. Q. Luo, and H. Yao. 2013. Effect of pyrolysis conditions on the char gasification with mixtures of CO2 and H2O. Proc. Combust. Inst. 34:2453–60.
  • Chen, P., M. Y. Gu, X. Chen, and J. C. Chen. 2019. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char. Fuel 236:1213–25.
  • Chen, P., P. P. Wang, M. Y. Gu, Y. Fang, K. Luo, and J. R. Fan. 2021. Theoretical and experimental investigation on the effect of CO on N migration and conversion during air-staged coal combustion. J. Energ. Inst. 97:138–51.
  • Enoki, T., S. Fujii, and K. Takai. 2012. Zigzag and armchair edges in graphene. Carbon 50:3141–45.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman et al 2016. Gaussian 16 Rev. A.03. Wallingford, CT.
  • Giménez-López, J., A. Millera, R. Bilbao, and M. U. Alzueta. 2010. HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. Combust. Flame 157:267–76.
  • Gladysz, P., and A. Ziębik. 2016. Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO2 transport and storage. Biomass Bioenerg. 85:109–18.
  • Hecht, E. S., C. R. Shaddix, A. Molina, and B. S. Haynes. 2011. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proc. Combust. Inst. 33:1699–706.
  • Jiao, A. Y., H. Zhang, J. X. Liu, and X. M. Jiang. 2018. Quantum chemical and kinetics calculations for the NO reduction with char(N): Influence of the carbon monoxide. Combust. Flame 196:377–85.
  • Li, L., S. Tong, L. B. Duan, C. S. Zhao, and Z. P. Shi. 2021. Effect of CO2 and H2O on lignite char structure and reactivity in a fluidized bed reactor. Fuel Process. Technol. 211:106564.
  • Liang, X. R., Q. H. Wang, Z. Y. Luo, E. Eddings, T. Ring, S. M. Li, P. Yu, J. Q. Yan, X. D. Yang, and X. Jia. 2021. Experimental and numerical investigation on nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal. J. Clean. Prod. 278:123240.
  • Lin, J. Y., S. Zhang, L. A. Zhang, Z. H. Min, H. L. Tay, and C. Z. Li. 2010. HCN and NH3 formation during coal/char gasification in the presence of NO. Environ. Sci. Technol. 44:3719–23.
  • Liu, M. Z., M. X. Liu, Z. Q. Zha, J. L. Pan, X. H. Qiu, T. Li, Wang, J. B., Zheng, Y., Zhong, D. Y. 2018. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 122:9586–92.
  • Montoya, A., -T.-T.-T. Truong, F. Mondragón, and T. N. Truong. 2001. CO desorption from oxygen species on carbonaceous surface: 1. effects of the local structure of the active site and the surface coverage. J. Phys. Chem. A 105:6757–64.
  • Perry, S. T., E. M. Hambly, T. H. Fletcher, M. S. Solum, and R. J. Pugmire. 2000. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proc. Combust. Inst. 28:2313–19.
  • Qin, H., P. He, J. Wu, and N. Chen. 2020. Theoretical study of hydrocarbon functional groups on elemental mercury adsorption on carbonaceous surface. Chem. Eng. J. 380:122505.
  • Rayne, S., and K. Forest. 2010. Gas phase isomerization enthalpies of organic compounds: A semiempirical, density functional theory, and ab initio post-Hartree–Fock theoretical study. J. Mol. Struct. THEOCHEM 948:102–07.
  • Ren, Q. Q., H. Y. Chi, J. Gao, C. X. Zhang, S. Su, H. N. Leong, K. Xu, S. Hu, Y. Wang, and J. Xiang. 2020. Experimental study and mechanism analysis of NO formation during volatile-N model compounds combustion in H2O/CO2 atmosphere. Fuel 273:117722.
  • Robinson, R. K., and R. P. Lindstedt. 2013. A comparative ab initio study of hydrogen abstraction from n-propyl benzene. Combust. Flame 160:2642–53.
  • Sanchez, A., F. Mondragon, and E. G. Eddings 2009. Fuel-nitrogen evolution during fluidized bed oxy-coal combustion. In book: Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi‘an China. (pp.1136–40).
  • Suresh, C. H., T. L. Lincy, N. Mohan, and R. Rakhi. 2015. Aromatization energy and strain energy of buckminsterfullerene from homodesmotic reactions. J. Phys. Chem. A 119:6683–88.
  • Telesca, A., M. Marroccoli, N. Ibris, C. Lupiáñez, L. I. Díez, Romeo, L. M., Montagnaro, F. 2017. Use of oxyfuel combustion ash for the production of blended cements: A synergetic solution toward reduction of CO2 emissions. Fuel Process. Technol. 156:211–20.
  • Wang, B., L. S. Sun, S. Su, J. Xiang, S. Hu, and H. Fei. 2012. A kinetic study of NO formation during oxy-fuel combustion of pyridine. Appl. Energ. 92:361–68.
  • Yang, Y., J. Liu, F. Liu, Z. Wang, J. Ding, and H. Huang. 2019. Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst. Chem. Eng. J. 361:578–87.
  • Zhang, H., J. X. Liu, J. Shen, and X. M. Jiang. 2015. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion. Energy 82:312–21.
  • Zhang, H., X. M. Jiang, and J. X. Liu. 2020. Updated effect of carbon monoxide on the interaction between NO and char bound nitrogen: A combined thermodynamic and kinetic study. Combust. Flame 220:107–18.
  • Zhang, H., X. M. Jiang, J. X. Liu, and J. Shen. 2014. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups. Energ. Convers. Manag. 83:167–76.
  • Zhao, K., A. D. Jensen, and P. Glarborg. 2014. NO Formation during oxy-fuel combustion of coal and biomass chars. Energ. Fuels 28:4684–93.
  • Zhao, L. W., W. Kan, H. T. Yu, H. G. Fu, and J. Z. Sun. 2007. Theoretical study on the reaction mechanism of ketene CH2CO with isocyanate NCO radical. Chinese J. Chem. 25:1105–11.
  • Zhao, T., W. L. Song, C. G. Fan, S. G. Li, P. Glarborg, and X. Q. Yao. 2018. Density functional theory study of the role of an carbon–oxygen single bond group in the NO–Char reaction. Energ. Fuels 32:7734–44.
  • Zhao, Y., and D. G. Truhlar. 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120:215–41.
  • Zhao, Y., and D. G. Truhlar. 2011. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett. 502:1–13.
  • Zhao, Y., Y. Li, H. L. Liu, X. R. Huang, and C. Sun. 2010. Theoretical study on the mechanism of the NCO+CH3 reaction. J. Mol. Struc.-THEOCHEM 947:32–39.
  • Zheng, M., X. X. Li, and L. Guo. 2018. Investigation of N behavior during coal pyrolysis and oxidation using ReaxFF molecular dynamics. Fuel 233:867–76.
  • Zhu, R. S., and M. C. Lin. 2000. The NCO+NO reaction revisited: Ab Initio MO/VRRKM calculations for total rate constant and product branching ratios. J. Phys. Chem. A 104:10807–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.