202
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Various Carbon Materials Action on the Burning Rate Modifiers of Low-Calorie Double-Base Propellant

ORCID Icon, &
Pages 2327-2339 | Received 23 Aug 2021, Accepted 06 Dec 2021, Published online: 31 Dec 2021

References

  • Abdelhafiz, M., M. Yehia, H. E. Mostafa, and T. Z. Wafy. 2020. Catalytic action of carbon nanotubes on ammonium perchlorate thermal behavior. React. Kinet. Mech. Catal. 131 (1):353–66. doi:10.1007/s11144-020-01848-y.
  • Androsov, A. S., A. P. Denisyuk, and N. P. Tokarev. 1976. Laws governing the effect of lead-copper catalysts on the combustion rate of a ballistic powder. Combust. Explos. Shock Waves 12 (5):698–700. doi:10.1007/BF00743182.
  • Androsov, A. S., A. P. Denisyuk, and N. P. Tokarev. 1978. Mechanism of the effect of composite lead-copper catalysts on powder combustion. Combust. Explos. Shock Waves 14 (2):184–87. doi:10.1007/BF00788376.
  • Androsov, A. S., A. P. Denisyuk, N. P. Tokarev, and K. G. Fominov. 1975. Role of individual components with the catalysis of the combustion of ballistic powders. Combust. Explos. Shock Waves 11 (1):14–20. doi:10.1007/BF00742850.
  • Berber, S., Y. K. Kwon, and D. Tománek. 2000. Unusually high thermal conductivity of carbon nanotubes. Chem. Phys. Lett. 84 (20):4613–16. doi:10.1103/PhysRevLett.84.4613.
  • Bizot, A., and M. W. Beckstead. 1988. A model for double-base propellant combustion. Proceedings of the 22nd Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA.: 1827–34.
  • Cheng, J., J. Yan, L. Wang, R. Zhang, Z. Liu, R. Wang, and Z. Li. 2020. Functionalization graphene oxide with energetic groups as a new family of metal‑free and energetic burning rate catalysts and desensitizers for ammonium perchlorate. J. Therm. Anal. Calorim. 140 (5):2111–22. doi:10.1007/s10973-019-08938-7.
  • Denisyuk, A. P., L. A. Demidova, and V. I. Galkin. 1995. The primary zone in the combustion of solid propellants containing catalysts. Combust. Explos. Shock Waves 31 (2):161–67. doi:10.1007/BF00755743.
  • Denisyuk, A. P., T. M. Kozyreva, and V. G. Khubaev. 1975. The effects of ratio of PbO to carbon black on the burning rate of ballasted gunpowder. Combust. Explos. Shock Waves 11 (2):271–73. doi:10.1007/BF00756733.
  • Denisyuk, A. P., A. D. Margolin, N. P. Tokarev, V. G. Khubaev, and L. A. Demidova. 1977. Role of carbon black in combustion of ballistic powders with lead-containing catalysts. Combust. Explos. Shock Waves 13 (4):490–96. doi:10.1007/BF00744797.
  • Denisyuk, A. P., Y. M. Milekhin, L. A. Demidova, and V. A. Sizov. 2018. Effect of carbon nanotubes on the catalysis of propellant combustion. Dokl. Chem. 483 (2):301–03. doi:10.1134/S0012500818120078.
  • Duterque, J., J. Hommel, and G. Lengellé. 1985. Experimental study of double-base propellants combustion mechanisms. Propellants Explos. Pyrotech. 10 (1):18–25. doi:10.1002/prep.19850100106.
  • Gao, H., Y. Zheng, X. Cao, B. Wang, and F. Nan. 2021. Function and action mechanism of carbon nanomaterials used in propellants. J. Phys. Conf. Ser. 2021:012018. doi:10.1088/1742-6596/2021/1/012018.
  • Gao, J.-M., L. Wang, H.-J. Yu, A.-G. Xiao, and W.-B. Ding. 2011. Recent research progress in burning rate catalysts. Propellants Explos. Pyrotech. 36 (5):404–09. doi:10.1002/prep.200900093.
  • Hewkin, D. J., J. A. Hicks, J. Powling, and H. Watts. 1971. The combustion of nitric ester-based propellants: Ballistic modification by lead compounds. Combust. Sci. Technol. 2 (5–6):307–27. doi:10.1080/00102207108952257.
  • Hong, W.-L., Y.-F. Xue, F.-Q. Zhao, J.-H. Liu, H.-B. Shi, S.-Y. Xu, J.-H. Yi, and H.-X. Gao. 2012. Preparation of Bi2O3/CNTs composite and its combustion catalytic effect on double-base propellant. Chin J Explos. Propellants 6:7–11.
  • Hong, W.-L., X.-Y. Zhu, F.-Q. Zhao, J.-H. Yi, H.-X. Gao, and D.-Y. Tian. 2010. Preparation of CuO/CNTs and its combustion catalytic activity on double-base propellant. Chin. J. Explos. Propellants 6:83–86.
  • Joshi, A. D., and H. Singh. 1992. Effect of certain lead and copper compounds as ballistic modifier for double-base rocket propellants. J. Energetic Mater. 10 (4–5):299–309. doi:10.1080/07370659208018928.
  • Kim, P., L. Shi, A. Majumdar, and P. L. McEuen. 2001. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87 (21):215502. doi:10.1103/PhysRevLett.87.215502.
  • Kubota, N., J. J. Ohlemiller, L. H. Caveny, and M. Summerfield. 1974. Site and mode of action of platonizers in double base propellants. AIAA J. 12 (12):1709–14. doi:10.2514/3.49583.
  • Kubota, N., J. J. Ohlemiller, L. H. Caveny, and M. Summerfield. 1975. The mechanism of super-rate burning of catalyzed double-base propellants. Proceedings of the 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA: 529–37.
  • Liu, L., W. Ao, Z. Wen, Y. Zhang, X. Lv, Z. Qin, and P. Liu. 2021. Combustion promotion and agglomeration reduction of the composite propellant using graphene. Aerosp. Sci. Technol. 118:106988. doi:10.1016/j.ast.2021.106988.
  • Pei, J., H. Zhao, F. Yang, and D. Yan. 2021. Graphene oxide/Fe2O3 nanocomposite as an efficient catalyst for thermal decomposition of ammonium perchlorate via the vacuum-freeze-drying method. Langmuir 37 (20):6132–38. doi:10.1021/acs.langmuir.1c00108.
  • Preckel, R. F. 1965. Plateau ballistics in nitrocellulose propellants. AIAA J. 3 (2):346–47. doi:10.2514/3.7457.
  • Reshmi, S., C. B. Catherine, and C. P. Reghunadhan Nair. 2011. Effect of carbon nanotube on the thermal decomposition characteristics of selected propellant binders and oxidisers. Int. J. Nanotechnol. 8 (10/11/12):979–87. doi:10.1504/IJNT.2011.044441.
  • Wang, H., F.-Q. Zhao, S.-W. Li, and H.-X. Gao. 2006. Function of carbon materials used in solid propellants and their action mechanism. Chin J Explos. Propellants 4:32–35.
  • Wang, W., and D. Zhang. 2018. A kinetic investigation on the thermal decomposition of propellants catalyzed by rGO/MFe2O4 (M= Cu, Co, Ni, Zn) nanohybrids. J. Saudi Chem. Soc. 23 (5):627–35. doi:10.1016/j.jscs.2018.11.002.
  • Warren, L. R., Z. Wang, C. R. Pulham, and C. A. Morrison. 2020. A review of the catalytic effects of lead-based ballistic modifiers on the combustion chemistry of double base propellants. Propellants Explos. Pyrotech. 46 (1):13–25. doi:10.1002/prep.202000167.
  • Yan, Q. L., M. Gozin, F. Q. Zhao, A. Cohen, and S. P. Pang. 2016. High energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8 (9):4799–851. doi:10.1039/C5NR07855E.
  • Youfang, C. 1987. Combustion mechanism of double-base propellants with lead burning rate catalysts. Propellants Explos. Pyrotech. 12 (6):209–14. doi:10.1002/prep.19870120607.
  • Zhao, F. Q., Q. L. Yan, Y. J. Yang, Y. J. Luo, J. H. Yi, and W. L. Hong. 2018. Preparation and evaluation of effective combustion catalysts based on Cu(I)/Pb(II) or Cu(II)/Bi(II) nanocomposites carried by Graphene Oxide (GO). Propellants Explos. Pyrotech. 43 (11):1087–95. doi:10.1002/prep.201800007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.