505
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Forest Fires in the Brazilian Amazon and their Effects on Particulate Matter Concentration, Size Distribution, and Chemical Composition

, ORCID Icon, , , , & show all
Pages 3045-3071 | Received 05 Nov 2020, Accepted 12 Dec 2021, Published online: 02 Jan 2022

References

  • Alves, L. 2020. Surge of respiratory illnesses in children due to fires in Brazil’s Amazon region. Lancet Respir. Med. 8 (1):21–22. doi:10.1016/S2213-2600(19)30410-2.
  • Amaral, S. S., J. A. de Carvalho Junior, M. A. M. Costa, T. G. S. Neto, R. Dellani, L. H. S. Leite. 2014. Comparative study for hardwood and softwood forest biomass: Chemical characterization, combustion phases and gas and particulate matter emissions. Bioresour. Technol. 164 (x):55–63. doi:10.1016/j.biortech.2014.04.060.
  • Amaral, S. S., M. A. M. Costa, T. G. Soares Neto, M. P. Costa, F. F. Dias, E. Anselmo, J. C. D. Santos, J. A. D. Carvalho. . 2019. CO2, CO, hydrocarbon gases and PM2.5 emissions on dry season by deforestation fires in the Brazilian Amazonia. Environ. Pollut. 249:311–20. doi:10.1016/j.envpol.2019.03.023.
  • Anttila, P., U. Makkonen, H. Hellen, K. Kyllonen, S. Leppanen, H. Saari, and H. Hakola. 2008. Impact of the open biomass fires in spring and summer of 2006 on the chemical composition of background air in south-eastern Finland. Atmos. Environ. 42 (26):6472–86. doi:10.1016/j.atmosenv.2008.04.020.
  • Barlow, J., E. Berenguer, R. Carmenta, and F. França. 2019. Clarifying Amazonia’s burning crisis. Glob. Change Biol. 26:1–3. doi:10.1111/gcb.14872.
  • Bytnerowicz, A., Y.-M. Hsu, K. Percy, A. Legge, M. E. Fenn, S. Schilling, W. Frączek, D. Alexander . 2016. Ground-level air pollution changes during a boreal wildland mega-fire. Sci. Total Environ. 572:755–69. doi:10.1016/j.scitotenv.2016.07.052.
  • Carvalho Jr., J. A., S. S. Amaral, M. A. M. Costa, T. G. Soares Neto, C. A. G. Veras, F. S. Costa, T. T. van Leeuwen, G. C. Krieger Filho, E. Tourigny, M. C. Forti, et al. 2016. CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia. Atmos. Environ. 135:73–83. doi:10.1016/j.atmosenv.2016.03.043.
  • Carvalho, J., Jr., Costa, F.S., Gurgel Veras, C.A., Sandberg, D.V., Alvarado, E.C., Gielow, R., Serra Jr, A.M., Santos, J.C. 2001. Biomass fire consumption and carbon release rates of rainforest clearing experiments conducted in northern Mato Grosso, Brazil. J. Geophys. Res. 106(D16):17877–87. doi:10.1029/2000JD900791.
  • Cheng, M.-T., C.-L. Horng, Y.-R. Su, L.-K. Lin, Y.-C. Lin, C. C.-K. Chou. 2009. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan. J. Hazard. Mater. 165 (1–3):187–92. doi:10.1016/j.jhazmat.2008.09.101.
  • Choudhary, V., P. Rajput, and T. Gupta. 2021. Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability. Environ. Pollut. 272:115932. doi:10.1016/j.envpol.2020.115932.
  • Costa, M. A. M., J. A. Carvalho, T. G. Soares Neto, E. Anselmo, B. A. Lima, L. T. U. Kura, J. C. Santos. 2012. Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos. Environ. 54:480–89. doi:10.1016/j.atmosenv.2012.02.023.
  • Da Rocha, G. O., A. G. Allen, and A. A. Cardoso. 2005. Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environ. Sci. Technol. 39 (14):5293–301. doi:10.1021/es048007u.
  • Da Silva, S. S. D., P. M. Fearnside, P. M. L. D. A. Graça, I. F. Brown, A. Alencar, A. W. F. D. Melo. 2018. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manage. 424 (January):312–22. doi:10.1016/j.foreco.2018.04.041.
  • De oliveira alves, N., A. L. Matos Loureiro, F. C. Dos Santos, K. H. Nascimento, R. Dallacort, P. de Castro Vasconcellos, S. de Souza Hacon, P. Artaxo, S. R. B. de Medeiros. 2011. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol. Environ. Saf. 74 (5):1427–33. doi:10.1016/j.ecoenv.2011.04.007.
  • de Oliveira Alves, N., de Souza Hacon, S., de Oliveira Galvao, M.F., Simoes Peixoto, M., Artaxo, P., de Castro, P., de Medeiros, S.R.B. 2014. Genetic damage of organic matter in the Brazilian Amazon: A comparative study between intense and moderate biomass burning. Environ. Res. 130:51–58. doi:10.1016/j.envres.2013.12.011.
  • de Oliveira Alves, N., J. Brito, S. Caumo, A. Arana, S. de Souza Hacon, P. Artaxo, R. Hillamo, K. Teinilä, S. R. Batistuzzo de Medeiros, P. de Castro Vasconcellos, et al. 2015. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmos. Environ. 120:277–85. doi:10.1016/j.atmosenv.2015.08.059.
  • Dong, X., L. Fang, Z. Lin, S. P. Harrison, Y. Chen, and J.-S. Kug. 2021. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 794:1487182. doi:10.1016/j.scitotenv.2021.148718.
  • Dos Reis, M., P. M. L. de Alencastro Graça, A. M. Yanai, C. J. P. Ramos, and P. M. Fearnside. 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. J. Environ. Manage. 288:112310. doi:10.1016/j.jenvman.2021.112310.
  • Duarte, R. M. B. O., J. T. V. Matos, A. S. Paula, S. P. Lopes, G. Pereira, P. Vasconcellos, A. Gioda, R. Carreira, A. M. S. Silva, A. C. Duarte, et al. 2017. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe. Environ. Pollut. 227:513–25. doi:10.1016/j.envpol.2017.05.011.
  • Falkovich, H., E. R. Graber, G. Schkolnik, Y. Rudich, W. Maenhaut, and P. Artaxo. 2005. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5 (3):781–97. doi:10.5194/acp-5-781-2005.
  • Fann, N., B. Alman, R. A. Broome, G. G. Morgan, F. H. Johnston, G. Pouliot, A. G. Rappold. 2018. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012ʹ. Sci. Total Environ. 610–611:802–09. doi:10.1016/j.scitotenv.2017.08.024.
  • Galvão, M. F., N. de Oliveira Alves, P. A. Ferreira, S. Caumo, P. de Castro Vasconcellos, P. Artaxo, S. de Souza Hacon, D. A. Roubicek, S. R. Batistuzzo de Medeiros .2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233:960–70. doi:10.1016/j.envpol.2017.09.068.
  • Gao, S., D. A. Hegg, P. V. Hobbs, T. W. Kirchstetter, B. I. Magi, and M. Sadilek. 2003. Water-soluble organic components in aerosols associated with savanna fires in Southern Africa: Identification, evolution, and distribution. J. Geophys. Res. 108:8491. doi:10.1029/2002JD002324.
  • Garbaras, A., A. Masalaite, I. Garbariene, D. Ceburnis, E. Krugly, V. Remeikis, E. Puida, K. Kvietkus, D. Martuzevicius . 2015. Stable carbon fractionation in size-segregated aerosol particles produced by controlled biomass burning. J. Aerosol. Sci. 79:86–96. doi:10.1016/j.jaerosci.2014.10.005.
  • Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L., Tejada, G., Aragão, L.E., Nobre, C., and Peters, W. et al. 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature 595 (7867):388–393. doi:10.1038/s41586-021-03629-6.
  • Gonçalves, C., B. R. Figueiredo, C. A. Alves, A. A. Cardoso, R. Da Silva, S. H. Kanzawa, A. M. Vicente . 2016. Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmos. Res. 182:102–13. doi:10.1016/j.atmosres.2016.07.027.
  • Hays, M. D., P. M. Fine, C. D. Geron, M. J. Kleeman, B. K. Gullett, . 2005. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 39 (36):6747–64. doi:10.1016/j.atmosenv.2005.07.072.
  • Hoffer, A., A. Gelencsér, M. Blazsó, P. Guyon, P. Artaxo, M. O. Andreae. 2006. Diel and seasonal variations in the chemical composition of biomass burning aerosol. Atmos. Chem. Phys. 6 (11):3505–15. doi:10.5194/acp-6-3505-2006.
  • Hosseini, S., Qi Li, D. Cocker, D. Weise, A. Miller, M. Shrivastava, J. W. Miller, S. Mahalingam, M. Princevac, and H. Jung. 2010. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10 (16):8065–8076. doi:10.5194/acp-10-8065-2010.
  • INPE, N. I. for S. R . 2020. Taxa Estimada do Desmatamento da Amazônia Legal para o Período Ago/2015 – Jul/2019. Accessed 05 September 2020. Available at: http://www.inpe.br/noticias/noticia.php
  • Jacobson, M. Z. 2012. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. Journal of Geophysical Research: Atmospheres 117 (D6):1–25. doi:10.1029/2011JD017218.
  • Johnston, F., S. B. Henderson, Y. Chen, J. T. Randerson, M. Marlier, R. S. DeFries, P. Kinney, D. M. J. S. Bowman, M. Brauer. 2012. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120(5):695–702. doi:10.1289/ehp.1104422.
  • Johnston, H. J., W. Mueller, S. Steinle, S. Vardoulakis, K. Tantrakarnapa, M. Loh, J. W. Cherrie. 2019. ‘How harmful is particulate matter emitted from biomass burning? A Thailand perspective,’ current pollution reports. Curr. Pollut. Rep. 5 (4):353–77. doi:10.1007/s40726-019-00125-4.
  • Kalogridis, A.-C., O. B. Popovicheva, G. Engling, E. Diapouli, K. Kawamura, E. Tachibana, K. Ono, V. S. Kozlov, K. Eleftheriadis .2018. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. Atmos. Environ. 185:15–28. doi:10.1016/j.atmosenv.2018.04.033.
  • Kamilli, K. A., L. Poulain, A. Held, A. Nowak, W. Birmili, A. Wiedensohler .2014. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition. Atmos. Chem. Phys. 14 (2):737–49. doi:10.5194/acp-14-737-2014.
  • Karanasiou, A., A. Alastuey, F. Amato, M. Renzi Massimo, S. Aurelio Tobias, C. Reche, F. Forastier, S. Gumy, P. Mudu, and X. Querol. 2021. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 781:146739. doi:10.1016/j.scitotenv.2021.146739.
  • Kim Oanh, N. T., B. T. Ly, D. Tipayarom, B. R. Manandhar, P. Prapat, C. D. Simpson, L.-J. Sally Liu .2011. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 45 (2):493–502. doi:10.1016/j.atmosenv.2010.09.023.
  • Kollanus, V., P. Tiittanen, J. V. Niemi, T. Lanki .2016. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environ. Res. 151:351–58. doi:10.1016/j.envres.2016.08.003.
  • Krivácsy, Z. 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ. 35 (36):6231–44. doi:10.1016/S1352-2310(01)00467-8.
  • Krivácsy, Z., A. Gelencsér, G. Kiss, E. Mészáros, Á. Molnár, A. Hoffer, T. Mészáros, Z. Sárvári, D. Temesi, B. Varga, et al. 2001. Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J. Atmos. Chem. 39 (3):235–59. doi:10.1023/A:1010637003083.
  • Kulkarni, P., P. Baron, and K. Willeke. 2011. Aerosol meassurement: Principles, techniques and applications. 3rd. New Jersey: JohnWiley & Sons. doi:10.1142/9789811212185_0004.
  • Kundu, S., Kawamura, K., Andreae, T.W., Hoffer, A., Andreae, M.O. 2010. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. J. Aerosol. Sci. 41 (1):118–33. doi:10.1016/j.jaerosci.2009.08.006.
  • Li, J., M. Posfai, P. V. Hobbs, and P. R. Buseck. 2003. Individual aerosol particles from biomass burning in Southern Africa: 2. Compositions and aging of inorganic particles. J. Geophys. Res. 108:8484. doi:10.1029/2002JD002310.
  • Machado-Silva, F., R. Libonati, T. F. Melo de Lima, R. Bittencourt Peixoto, J. R. de Almeida França, M. de Avelar Figueiredo Mafra Magalhães, F. Lemos Maia Santos, J. Abrantes Rodrigues, C. C. DaCamara 2020. Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecol. Indic. 109:105817. doi:10.1016/j.ecolind.2019.105817.
  • Mazzone, A., T. Cruz, and P. Bezerra. 2021. Firewood in the forest: Social practices, culture, and energy transitions in a remote village of the Brazilian Amazon. Energy Res. Soc. Sci. 74:101980. doi:10.1016/j.erss.2021.101980.
  • Mochida, M., K. Kawamura, P. Fu, T. Takemura 2010. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmos. Environ. 44 (29):3511–18. doi:10.1016/j.atmosenv.2010.06.017.
  • Nirmalkar, J., and M. K. Deb. 2016. Impact of intense field burning episode on aerosol mass loading and its possible health implications in rural area of eastern central India. Air Qual. Atmos. Health 9 (3):241–49. doi:10.1007/s11869-015-0330-y.
  • NOAA. 2020. El Niño and La Niña Years and Intensities Based on Oceanic Niño Index (ONI). Accessed 01 October 2020. https://bityl.co/4uDj
  • Obaidullah, M., Bram, S., Verma, V.K., Ruyck, J.D. 2012. A review on particle emissions from small scale biomass combustion. Int. J. Renew. Energy Res. 2 (1):147–59. doi:10.20508/ijrer.15633.
  • Okoshi, R., A. Rasheed, G. Chen Reddy, C. J. McCrowey, D. B. Curtis 2014. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires. Atmos. Environ. 89:392–402. doi:10.1016/j.atmosenv.2014.01.024.
  • P. Anttila, U. Makkonen, H. Hellen, K. Kyllonen, S. Leppanen, H. Saari, and H. Hakola. 2008. Impact of the open biomass fires in spring and summer of 2006 on the chemical composition of background air in south-eastern Finland. Atmos. Environ. 42 (26):6472–6486.
  • Pallozzi, E., I. Lusini, L. Cherubini, R. A. Hajiaghayeva, P. Ciccioli, C. Calfapietra. 2018. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ. Pollut. 234:457–67. doi:10.1016/j.envpol.2017.11.080.
  • Paralovo, S. L., C. G. G. Barbosa. 2018. Observations of particulate matter, NO2, SO2, O3, H2S and selected VOCs at a semi-urban environment in the Amazon region. Sci. Total Environ. 650(4):996–1006. doi:10.1016/j.scitotenv.2018.09.073.
  • Phairuang, W., P. Suwattiga, T. Chetiyanukornkul, S. Hongtieab, W. Limpaseni, F. Ikemori, M. Hata, M. Furuuchi. 2019. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 247:238–47. doi:10.1016/j.envpol.2019.01.001.
  • Pivello, V. R., I. Vieira, A. V. Christianini, D. B. Ribeiro, L. Da Silva Menezes, C. N. Berlinck, F. P. L. Melo, J. A. Marengo, C. G. Tornquist, W. M. Tomas, et al. 2021. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19 (3):233–55. doi:10.1016/j.pecon.2021.06.005.
  • Pratt, K., Murphy, S., Subramanian, R., DeMott, P., Kok, G., Campos, T., Rogers, D., Prenni, A., Heymsfield, A., and Seinfeld, J. (2011). Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmos. Chem. Phys. 11:12549–12565.
  • Ramsay, R., C. F. Di Marco, M. Sörgel, M. R. Heal, S. Carbone, P. Artaxo, A. C. Araùjo, M. Sá, C. Pöhlker, J. Lavric, et al. 2020. Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest. Atmos. Chem. Phys. 20 (24):15551–84. doi:10.5194/acp-20-15551-2020.
  • Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio. 2005. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5 (3):799–825. doi:10.5194/acp-5-799-2005.
  • Ribeiro, I. O., E. O. Do Santos, and R. A. F. de Souza. 2020. Impact of biomass burning on a metropolitan area in the Amazon during the 2015 El Niño: The enhancement of carbon monoxide and levoglucosan concentrations. Environ. Pollut. 260:114029. doi:10.1016/j.envpol.2020.114029.
  • Rizzo, L. V., P. Artaxo, T. Karl, A. B. Guenther, J. Greenberg. 2010. Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia. Atmos. Environ. 44 (4):503–11. doi:10.1016/j.atmosenv.2009.11.002.
  • Sandro, F., S. Decesari, M. Cristina Facchin. 2007. Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season. doi:10.1029/2005JD006741.
  • Schkolnik, G., A. H. Falkovich, Y. Rudich, W. Maenhaut, and P. Artaxo. 2005. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-Methylerythritol and its application to smoke and rainwater samples. Environmental Science & Technology 39 (8):2744–52. doi:10.1021/es048363c.
  • Soares Neto, T. G., J. A. Carvalho, C. A. G. Veras, E. C. Alvarado, R. Gielow, E. N. Lincoln, T. J. Christian, R. J. Yokelson, J. C. Santos .2009. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmos. Environ. 43 (2):438–46. doi:10.1016/j.atmosenv.2008.07.063.
  • Uranishi, K., F. Ikemori, H. Shimadera, A. Kondo, S. Sugata. 2019. Impact of field biomass burning on local pollution and long-range transport of PM2.5 in Northeast Asia. Environ. Pollut. 244:414–22. doi:10.1016/j.envpol.2018.09.061.
  • Urban, R. C., M. Lima-Souza, L. Caetano-Silva, M. E. C. Queiroz, R. F. P. Nogueira, A. G. Allen, A. A. Cardoso, G. Held, M. L. A. M. Campos .2012. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos. Environ. 61:562–69. doi:10.1016/j.atmosenv.2012.07.082.
  • Ward, T. J., R. F. Hamilton, R. W. Dixon, M. Paulsen, C. D. Simpson .2006. Characterization and evaluation of smoke tracers in PM: Results from the 2003 Montana wildfire season. Atmos. Environ. 40 (36):7005–17. doi:10.1016/j.atmosenv.2006.06.034.
  • Yamasoe, M. A., P. Artaxo, A. H. Miguel, A. G. Allen. 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmos. Environ. 34 (10):1641–53. doi:10.1016/S1352-2310(99)00329-5.
  • Yokelson, R. J., J. D. Crounse, P. F. DeCarlo, T. Karl, S. Urbanski, E. Atlas, T. Campos, Y. Shinozuka, V. Kapustin, A. D. Clarke, et al. 2009. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics 9 (15):5785–812. doi:10.5194/acp-9-5785-2009.
  • Youssouf, H., C. Liousse, L. Roblou, E. M. Assamoi, R. O. Salonen, C. Maesano, S. Banerjee, I. Annesi-Maesano. 2014. Quantifying wildfires exposure for investigating health-related effects. Atmos. Environ. 97:239–51. doi:10.1016/j.atmosenv.2014.07.041.
  • Zhao, H., D. Q. Tong, C. Gao, G. Wang 2015. Effect of dramatic land use change on gaseous pollutant emissions from biomass burning in Northeastern China. Atmos. Res. 153:429–36. doi:10.1016/j.atmosres.2014.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.