343
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fuel Particle Heat Transfer Part 2: Radiation and Convection during Spreading Laboratory Fires

&
Pages 3122-3147 | Received 19 Jan 2021, Accepted 12 Dec 2021, Published online: 05 Jan 2022

References

  • Albini, F. 1985. A model for fire spread in wildland fuels by radiation. Combust. Sci.Technol. 42 (5–6):229–58. doi:10.1080/00102208508960381.
  • Albini, F. 1986. Wildland fire spread by radiation – A model including fuel cooling by natural convection. Combust. Sci.Technol. 45:101–13. doi:10.1080/00102208608923844.
  • Anderson, H. 1969. Heat transfer and fire spread. Research paper INT-RP-69. Ogden: USDA Forest Service.
  • Baines, P. 1990. Physical mechanisms for the propagation of surface fires. Math. Comput. Model. 13 (12):83–94. doi:10.1016/0895-7177(90)90102-S.
  • Butler, B., M. Finney, P. Andrews, and F. Albini. 2004. A radiation-driven model for crown fire spread. Can. J. For. Res. 34 (8):1588–99. doi:10.1139/x04-074.
  • Byram, G., and R. Nelson. 1974. Buoyancy characteristics of a fire heat source. Fire Technol. 10 (1):68–79. doi:10.1007/BF02590513.
  • Call, P., and F. Albini. 1997. Aerial and surface fuel consumption in crown fires. Int. J. Wildland Fire 7 (3):, 259–264. doi:10.1071/WF9970259.
  • Cohen, J. 2004. Relating flame radiation to home ignition using modeling and experimental crown fires. Can. J. For. Res. 34 (8):1616–26. doi:10.1139/x04-049.
  • Cohen, J., and M. Finney (2010). An examination of fuel particle heating during fire spread. In: 6th International Conference on Forest Fire Research. Coimbra, Portugal.
  • de Mestre, N., E. Catchpole, D. Anderson, and R. Rothermel. 1989. Uniform propagation of a planar fire front without wind. Combust. Sci.Technol. 65:231–44. doi:10.1080/00102208908924051.
  • de Mestre, N., R. Rothermel, R. Wilson, and F. Albini. 1985. Radiation screened fire propagation. Sydney: University of New South Wales, Department of Mathematics. On file: USDA Forest Service Fire Sciences Laboratory, Missoula, Montana.
  • DeVeaux, R., P. Velleman, and D. Bock. 2005. Stats: Data and models. Boston: Pearson-Addison Wesley.
  • Drysdale, D. 1998. An Introduction to Fire Dynamics. New York: Wiley.
  • Fairbridge, C., R. Ross, and S. Sood. 1978. A kinetic and surface study of the thermal decomposition of cellulose powder in inert and oxidizing atmospheres. J. Appl. Polym. Sci. 22:497–510. doi:10.1002/app.1978.070220217.
  • Fang, J., and F. Steward. 1969. Flame spread through randomly packed fuel particles. Combust. Flame 13:392–98. doi:10.1016/0010-2180(69)90108-4.
  • Finney, M., J. Cohen, J. Forthofer, S. McAllister, B. Adam, N. Akafuah, J. English, K. Saito, D. Gorham, and M. Gollner (2014). Experimental evidence of buoyancy controlled flame spread in wildland fires. In: 7th International Conference on Forest Fire Research. Coimbra, Portugal.
  • Finney, M., J. Cohen, J. Forthofer, S. McAllister, M. Gollner, D. Gorham, K. Saito, N. Akafuah, B. Adam, and J. English (2015). Role of Buoyant flame dynamics in wildfire spread. Proceedings of the National Academy of Sciences, 112, pp. 9833–38.
  • Finney, M., J. Cohen, S. McAllister, and W. Jolly. 2013a. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 22:25–36. doi:10.1071/WF11117.
  • Finney, M., J. Forthofer, I. Grenfell, B. Adam, N. Akafuah, and K. Saito (2013b). A study of flame spread in engineered cardboard fuel beds, Part I: Correlations and observations. In: 7th International Symposium on Scale Modeling. Hirosaki, Japan.
  • Fons, W. 1946. Analysis of fire spread in light forest fuels. J. Agric. Res. 72:93–121.
  • Forestry Canada Fire Danger Group. (1992). Development and structure of the Canadian forest fire behavior prediction system. Information Report ST-X-3, Ottawa: Forestry Canada.
  • Frangieh, N., G. Accary, D. Morvan, S. Meradji, and O. Bessonov. 2020. Wildfires front dynamics: 3D structures and intensity at small and large scales. Combust. Flame 211:54–67. doi:10.1016/j.combustflame.2019.09.017.
  • Fritschen, L., and L. Gay. 1979. Environmental instrumentation. New York: Springer-Verlag.
  • Incropera, F., and D. DeWitt. 2002. Introduction to heat transfer. New York: Wiley.
  • Linn, R. (1997). A transport model for prediction of wildfire behavior. Technical Report LA-13334-T, Los Alamos: Los Alamos National Laboratory.
  • Linn, R., and P. Cunningham. 2005. Numerical simulations of grass fires using a coupled atmosphere-fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 110. doi:10.1029/2004JD005597.
  • McCarter, R., and A. Broido. 1965. Radiative and convective energy from wood crib fires. Pyrodynamics 2:65–68.
  • Mell, W., M. Jenkins, J. Gould, and P. Cheney. 2007. A physics-based approach to modeling grassland fires. Int. J. Wildland Fire 16 (1):1–22. doi:10.1071/WF06002.
  • Morvan, D., G. Accary, S. Meradji, N. Frangieh, and O. Bessonov. 2018. A 3D physical model to study the behavior of vegetation fires at laboratory scale. Fire Saf. J. 101:39–52. doi:10.1016/j.firesaf.2018.08.011.
  • Morvan, D., and J. Dupuy. 2004. Modeling the propagation of a wildfire through a mediterranean shrub using a multiphase formulation. Combust. Flame 138:199–210.
  • Pagni, P., and T. Peterson (1973). Fire spread through porous fuels. 14th Symposium (International) on Combustion, 14( 1), Pittsburgh: Combustion Institute, pp. 1099–107.
  • Porterie, B., L. Consalvi, A. Kaiss, and J. Loraud. 2005. Predicting wildland fire behavior and emissions using a fine-scale physical model. Numer. Heat Transf., Part A: Appl. 47 (6):571–91. doi:10.1080/10407780590891362.
  • Rothermel, R. 1972. A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-RP-115. Ogden: USDA Forest Service.
  • Rothermel, R. (1983). How to predict the spread and intensity of forest and range fires. General Technical Report INT-GTR-143, Ogden: USDA Forest Service.
  • Rothermel, R., and H. Anderson. 1966. Fire spread characteristics determined in the laboratory. Research paper INT-RP-30. Ogden: USDA Forest Service.
  • Sacadura, J. 2005. Radiative Heat Transfer in Fire Safety Science. J. Quant. Spectrosc. Radiat. Transf. 93:5–24. doi:10.1016/j.jqsrt.2004.08.011.
  • Sasaki, S., H. Masuda, M. Higano, and N. Hishinuma. 1994. Simultaneous measurements of specific heat and total hemispherical emissivity of chromel and alumel by a transient calorimetric technique. Int. J. Thermophys. 15 (3):547–65. doi:10.1007/BF01563713.
  • Sen, S., and I. Puri. 2008. Thermal radiation modeling in flames and fires, Ch. 8. In Transport phenomena in fires, ed. B. Sunden and M. Faghri. Southampton: WIT Press-Cambridge Printing.
  • Simmons, R. 1995. Fire Chemistry, Ch. 7. In Combustion fundamentals of fire, ed. G. Cox. New York: Academic Press.
  • Stocks, B., M. Alexander, B. Wotton, C. Stefner, M. Flannigan, S. Taylor, N. Lavoie, J. Mason, G. Hartley, M. Maffey, et al. 2004. Crown fire behavior in a Northern Jack Pine-Black Spruce Forest. Can. J. For. Res. 34:1548–60. doi:10.1139/x04-054.
  • Sullivan, A. 2009a. Wildland surface fire spread modeling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 18 (4):349–68. doi:10.1071/WF06143.
  • Sullivan, A. 2009b. Wildland surface fire spread modeling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 18 (4):369–86. doi:10.1071/WF06142.
  • Tillman, D., J. Amadeo, and W. Kitto. 1981. Wood Combustion. New York: Academic Press.
  • Tran, H., J. Cohen, and R. Chase (1992). Modeling ignition of structures in wildland/urban interface fires. In: Proceedings of the 1st International Fire and Materials Conference. Hamshire, UK: Interscience Communications Limited, pp. 253–62.
  • Weber, R. 1991. Modelling fire spread through fuel beds. Prog. Energy Combust. Sci. 17:67–82. doi:10.1016/0360-1285(91)90003-6.
  • Yedinak, K., J. Cohen, J. Forthhofer, and M. Finney. 2010. An examination of flame shape related to convection heat transfer in deep fuel beds. Int. J. Wildland Fire 19:171–78. doi:10.1071/WF07143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.