349
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Modeling with WFDS Combustion Dynamics of Ornamental Vegetation Structures at WUI: Focus on the Burning of a Hedge at Laboratory Scale

, , , , , , , , ORCID Icon & show all
Pages 3181-3211 | Received 09 Mar 2021, Accepted 12 Dec 2021, Published online: 12 Jan 2022

References

  • Ahonen, A., M. Kokkala, and H. Weckman 1984. Burning characteristics of potential ignition sources of room fires (Research Report 285), Valtion Teknillinen Tutkimuskeskus, Espoo, Finland.
  • Babrauskas, V., and S. E. Chastagner 2001. Flammability of cut christmass tree, IAAI Annual general meeting, Atlantic City, NJ, pp1–29
  • Babrauskas, V. 2016. SFPE handbook of fire protection engineering, Fifth Edition. In Heat release rates, Chap. 26, ed. Springer, 799–904.Heidelberg, Dordrecht, London, New York: Springer.
  • Baker, E., and J. Woycheese 2007. Burning characteristics of Douglas-fir trees: Scaling of individual tree fire based on tree size, Conference papers fire and materials 10th International Conference, Interscience Communications, London, San Francisco, CA.
  • Buffachi, P., G. C. Krieger, W. Mell, E. Alvarado, J. E. Santos, and J. A. Carvalho. 2016. Numerical simulation of surface fires in Brazilian Amazon. Fire Saf. J. 79:44–56. doi:10.1016/j.firesaf.2015.11.014.
  • Butler, B. W., W. R. Anderson, and E. A. Catchpole. 2007. The fire environment--innovations, management, and policy; conference proceedings. 26–30 March 2007; Destin, FL. Proceedings RMRS-P-46CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. CD-ROM. p. 75-82.
  • Castle, D. 2015. Numerical modeling of laboratory-scale surface-to-crown fire transition. M.S. Thesis, San Diego State University, California, Usa.
  • Cheney, N. P., J. S. Gould, and W. R. Catchpole. 1993. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3 (1):31–44. doi:10.1071/WF9930031.
  • Dahale, A., S. Ferguson, B. Shotorban, and S. Mahalingam. 2013. Effects of distribution of bulk density and moisture content on shrub fires. Int. J. Wildland Fire 22 (5):625–41. doi:10.1071/WF12040.
  • Damant, G. H., and S. Nurbakhsh. 1994. Christmas trees: What happens when they ignite? Fire Mater. 18 (1):9–16. doi:10.1002/fam.810180103.
  • Dibble, A. C., R. H. White, and P. K. Lebow. 2007. Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: Invasive versus non-invasive plants. Int. J. Wildland Fire 16 (4):426–43. doi:10.1071/WF05103.
  • Dimitrakopoulos, A. P., and K. K. Papaioannou. 2001. Flammability assessment of Mediterranean forest fuels. Fire Technology 37 (2):143–52. doi:10.1023/A:1011641601076.
  • Dimitrakopoulos, A. P. 2001. A statistical classification of Mediterranean species based on their flammability components. Int. J. Wildland Fire 10 (2):113–18. doi:10.1071/WF01004.
  • Dupuy, J. L., J. Maréchal, D. Portier, and J. C. Valette. 2011. Slope effect on laboratory fire spread: Contribution of radiation and convection to fuel bed preheating. Int. J. Wildland Fire 20 (2):272–88. doi:10.1071/WF09075.
  • Etlinger, M. G., and F. C. Beall. 2005. Development of a laboratory protocol for fire performance of landscape plants. Int. J. Wildland Fire 13:479–88. doi:10.1071/WF04039.
  • Evans, D. D., R. G. Rehm, and E. S. Baker 2004. Physics-based modeling for WUI fire spread: Simplified model algorithm for ignition of structures by burning vegetation, NIST Interagency/Internal Report (NISTIR) - 7179, NIST, Gaithersburg, MD.
  • Ganteaume, A., A. Bertin, M. Audouard, F. Guerra, J. M. Lopez, D. Morge, C. Travaglini, and M. Jappiot 2016. How ornamental vegetation burns: From particle flammability to vertical flame propagation. In ‘ForestFire 2016: International Conference on Forest Fires and WUI Fires,’ 25–27 May 2016, Aix-en-Provence, France.
  • Ganteaume, A., M. Jappiot, C. Lampin, M. Guijarro, and C. Hernando. 2013. Flammability of some ornamental species in wildland–urban interfaces in Southeastern France: Laboratory assessment at particle level. J. Environ. Manage. 52 (2):467–80. doi:10.1007/s00267-013-0067-z.
  • Hoffman, C. M., J. Canfield, R. R. Linn, W. Mell, C. H. Sieg, F. Pimont, and J. Ziegler. 2016. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 52 (1):221–37. doi:10.1007/s10694-015-0500-3.
  • Johansson, E. 1994. Woodwool slabs – manufacture, properties and use. Build. Issues 6 (3):3–26.
  • Li, J. 2011. Experimental investigation of bulk density and its role in fire behaviour in live shrub fuels, Master’s thesis, University of California Riverside.
  • Li, J., S. Mahalingam, and D. R. Weise. 2017. Experimental investigation of fire propagation in single live shrubs. Int. J. Wildland Fire 26 (1):58–70. doi:10.1071/WF16042.
  • Long, A., B. Hinton, W. Zipperer, A. Hermansen-Baez, A. Maranghides, and W. Mell. 2006. Quantifying and ranking the flammability of ornamental shrubs in the Southern United States, 1–3. San Diego, CA: Fire Ecology and Management Congress, The Association for Fire Ecology and Washington State University Extension.
  • Madrigal, J., E. Marino, M. Guijarro, C. Hernando, and C. Díez. 2012. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning. Ann. For. Sci. 69 (3):387–97. Springer Verlag/EDP Sciences. doi:10.1007/s13595-011-0165-0.
  • Madrzykowski, D. 2008. Impact of a residential sprinkler on the heat release rate of a christmas tree fire. Gaithersburg MD: National Institute of Standards and Technology. (NISTIR 7506).
  • Manzello, S. L., T. Yamada, A. Jeffers, Y. Ohmiya, K. Himoto, and A. C. Fernadez-Pello. 2013. Summary of workshop for fire structure interaction and urban and wildland-urban interface (WUI) Fires- operation Tomodachi-fire research. Fire Saf. J. 59:122–31. doi:10.1016/j.firesaf.2013.03.021.
  • McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt 2013. Fire dynamics simulator user’s guide. Technical Report NIST Special Publication, 1019-6, National Institute of Standards and Technology, Gaithersburg, Maryland.
  • Mell, W. E., M. A. Jenkins, J. Gould, and P. Cheney. 2007. A physics-based approach to modelling grassland fires. Int. J. Wildland 16 (1):1–22. doi:10.1071/WF06002.
  • Mell, W., A. Maranghides, R. McDermott, and S. Manzello. 2009. Numerical simulation and experiments of burning Douglas fir trees. Combust. Flame 156 (10):2023–41. doi:10.1016/j.combustflame.2009.06.015.
  • Moinuddin, K. A. M., and D. Sutherland. 2020. Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Mat. Comput. Simul. 175:81–95. doi:10.1016/j.matcom.2019.05.018.
  • Moinuddin, K. A. M., D. Sutherland, and W. Mell. 2018. Simulation study of grass fire using physics-based model: Striving toward numerical rigour and the effect of grass height on the rate of spread. Int. J. Wildland 27 (12):800–14. doi:10.1071/WF17126.
  • Morandini, F., P. A. Santoni, J. B. Tramoni, and W. E. Mell. 2019. Experimental investigation of flammability and numerical study of combustion of shrub of rockrose under severe drought conditions. Fire Saf. J. 108:102836. doi:10.1016/j.firesaf.2019.102836.
  • Morvan, D., and J. L. Dupuy. 2001. Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust. Flame 127 (1–2):1981–94. doi:10.1016/S0010-2180(01)00302-9.
  • Morvan, D. 2011. Physical phenomena and length scales governing the behaviour of wildfires: A case for physical modelling. Fire Technology 47 (2):437–60. doi:10.1007/s10694-010-0160-2.
  • Mueller, E., W. Mell, and A. Simeoni. 2014. Large eddy simulation of forest canopy flow for wildland fire modeling. Can. J. For. Res. 44 (12):1534–44. doi:10.1139/cjfr-2014-0184.
  • Overholt, K. J., A. J. Kurzawski, J. Cabrera, M. Koopersmith, and O. A. Ezekoye. 2014a. Fire behavior and heat fluxes for lab-scale burning of little bluestem grass. Fire Saf. J. 67:70–81. doi:10.1016/j.firesaf.2014.05.007.
  • Overholt, K. J., J. Cabrera, A. J. Kurzawski, M. Koopersmith, and O. A. Ezekoye. 2014b. Characterization of fuel properties and fire spread rates for little bluestem grass. Fire Technol. 50 (1):9–38. doi:10.1007/s10694-012-0266-9.
  • Padhi, S., B. Shotorban, and S. Mahalingam. 2016. Computational investigation of flame characteristics of a non-propagating shrub fire. Fire Saf. J. 81:64–73. doi:10.1016/j.firesaf.2016.01.016.
  • Parker, W. J. 1982. Calculations of the heat release rate by oxygen consumption for various applications, NBSIR 81–2427–1
  • Perez-Ramirez, Y. I., W. E. Mell, P. A. Santoni, J. B. Tramoni, and F. Bosseur. 2017. Examination of WFDS in modeling spreading fires in a furniture calorimeter. Fire Technol. 53 (5):1795–832. doi:10.1007/s10694-017-0657-z.
  • Porterie, B., J. L. Consalvi, A. Kaiss, and J. C. Loraud. 2005. Predicting wildland fire behavior and emissions using a fine-scale physical model. Numer. Heat Transfer, Part A 47 (6):571–91. doi:10.1080/10407780590891362.
  • Prince, D., C. Shen, and T. Fletcher. 2017. Semi-empirical model for fire spread in shrubs with spatially-defined fuel elements and flames. Fire Technol. 53 (3):1439–69. doi:10.1007/s10694-016-0644-9.
  • Sanchez-Monroy, X., W. Mell, J. Torres-Arenas, and B. W. Butler. 2019. Fire spread upslope: Numerical simulation of laboratory experiments. Fire Saf. J. 108:102844. doi:10.1016/j.firesaf.2019.102844.
  • Stroup, D. W., L. DeLauter, J. Lee, and G. Roadarmel. 1999. Scotch pine christmas tree fire tests. Gaithersburg MD: National Institute of Standards and Technology. (FR 4010).
  • Terrei, L., A. Lamorlette, and A. Ganteaume. 2019. Modelling the fire propagation from the fuel bed to the lower canopy of ornamental species used in wildland–urban interfaces. Int. J. Wildland Fire 28 (2):113–26. doi:10.1071/WF18090.
  • Tihay-Felicelli, V., P. A. Santoni, T. Barboni, and L. Leonelli. 2016. Autoignition of dead shrub twigs: Influence of diameter on ignition. Fire Technol. 52 (3):897–929. doi:10.1007/s10694-015-0514-x.
  • Tihay, V., F. Morandini, P. A. Santoni, Y. Perez-Ramirez, and T. Barboni. 2014. Combustion of forest litters under slope conditions: Burning rate, heat release rate, convective and radiant fractions for different loads. Combust. Flame 161 (12):3237–48. doi:10.1016/j.combustflame.2014.06.003.
  • Vacca, P., D. Caballero, E. Pastor, and E. Planas. 2020. WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. J. Saf. Sci. Resilience 1 (2):97–105. doi:10.1016/j.jnlssr.2020.08.001.
  • Weise, D. R., R. H. White, F. C. Beall, and M. Etlinger. 2005. Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int. J. Wildland Fire 14 (3):321–38. doi:10.1071/WF04035.
  • White, R. H., D. DeMars, and M. Bishop (1997) Flammability of chritmas trees and other vegetation. 24th International Conference on Fire Safety, Columbus, Ohio, USA, pp 99–110.
  • White, R. H., D. R. Weise, K. Mackes, and A. C. Dibble 2002. Cone calorimeter testing of vegetation: An update. In: Proceedings of the 35th international Conference on Fire Safety, 22–24 July 2002, Columbus, OH
  • White, R. H., D. R. Weise, and S. Frommer 1996. Preliminary evaluation of the flammability of native and ornamental plants with the cone calorimeter. In: Proceedings of the 21st International Conference on Fire Safety, Milbrae.
  • Wyse, S. V., G. L. W. Perry, D. M. O’Connell, P. S. Holland, M. J. Wright, C. L. Hosted, S. L. Whitelock, I. J. Geary, K. J. L. Maurin, and T. J. Curran. 2016. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 25 (4):466–77. doi:10.1071/WF15047.
  • Zhou, K., J. Jia, and J. Zhu. 2018. Experimental research on the burning behavior of dragon juniper tree. Fire Mater. 42 (2):173–82. doi:10.1002/fam.2469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.