346
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the Impact of Pinus Silvestris Pine Needles Bed Parameters on the Spread of Ground Fire in Still Air

ORCID Icon, , ORCID Icon, , , , , , , & show all
Pages 3072-3094 | Received 18 Mar 2021, Accepted 12 Dec 2021, Published online: 02 Jan 2022

References

  • Albini, F. A. 1981. A model for the wind-blown flame from a line fire. Combust. Flame 43:155–74. doi:10.1016/0010-2180(81)90014-6.
  • Balbi, J. H., J. L. Rossi, T. Marcelli, and P. A. Santoni. 2007. A 3D physical real-time model of surface fires across fuel beds. Combust. Sci. Technol. 179 (12):2511–37. doi:10.1080/00102200701484449.
  • Balbi, J. H., P. A. Santoni, and J. L. Dupuy. 1999. Dynamic modelling of fire spread across a fuel bed. Int. J. Wildland Fire 9 (4):275–84. doi:10.1071/WF00005.
  • Chen, T. B. Y., A. C. Y. Yuen, C. Wang, G. H. Yeoh, V. Timchenko, S. C. P. Cheung, and W. Yang. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int. J. Heat Mass Transf. 125:310–22. doi:10.1016/j.ijheatmasstransfer.2018.04.093.
  • Chen, T. B. Y., A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, S. C. Cheung, Q. N. Chan, and H. Lu. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. J. Comp. Sci. 24:8–23. doi:10.1016/j.jocs.2017.10.022.
  • De Falco, G., Moggia, G., Sirignano, M., Commodo, M., Minutolo, P. and D’Anna, A. 2017. Exploring Soot Particle Concentration and Emissivity by Transient Thermocouples Measurements in Laminar Partially Premixed Coflow Flames. Energies 10(2):232. doi:10.3390/en10020232
  • De Ris, J. N. 1968. Spread of a laminar diffusion flame. Proc Combust Inst 12:241–52. doi:10.1016/S0082-0784(69)80407-8.
  • Dold, J. W., and A. Zinoviev. 2009. Fire eruption through intensity and spread rate interaction mediated by flow attachment. Combust. Theory Model 13 (5):763–93. doi:10.1080/13647830902977570.
  • Dupuy, J. L., and D. Morvan. 2005. Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. Int. J. Wildland Fire 14 (2):141–51. doi:10.1071/WF04028.
  • El Houssami, M., J. C. Thomas, A. Lamorlette, D. Morvan, M. Chaos, R. Hadden, and A. Simeoni. 2016. Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combust. Flame 168:13–126. doi:10.1016/j.combustflame.2016.04.004.
  • Fire Dynamics Simulator, User Guide, v6.7.4
  • Grishin, A. M. 1997. Mathematical modeling of forest fires and new methods of fighting them. Editor. F. A. Albini, Tomsk: Pub. House of the Tomsk University.
  • Konev, E. V., and A. I. Sukhinin. 1977. The analysis of flame spread through forest fuel. Combust. Flame 28:217–23. doi:10.1016/0010-2180(77)90029-3.
  • Korobeinichev, O. P., A. Paletsky, M. B. Gonchikzhapov, I. K. Shundrina, H. Chen, and N. Liu. 2013. Combustion chemistry and decomposition kinetics of forest fuels. Procedia Eng. 62:182–93. doi:10.1016/j.proeng.2013.08.054.
  • Korobeinichev, O. P., A. Tereshchenko, A. Paletsky, A. Shmakov, M. Gonchikzhapov, A. Chernov, L. Kataeva, D. Maslennikov, and N. Liu. 2017. The velocity and structure of the flame front at spread of fire across the pine needle bed depending on the wind velocity. In (2015) Fire sci tech 2015, ed. K. Harada, K. Matsuyama, K. Himoto, Y. Nakamura, and K. Wakatsuki, 771–79. Singapore: Springer Singapore.
  • Li, H., N. Liu, X. Xie, L. Zhang, X. Yuan, Q. He, and D. X. Viegas. 2020. Effect of fuel bed width on upslope fire spread: An experimental study. Fire Technol. doi:10.1007/s10694-020-01031-8.
  • Liu, N. A., J. M. Wu, H. X. Chen, L. H. Zhang, Z. H. Deng, K. Satoh, D. X. Viegas, and J. R. Raposo. 2015. Upslope spread of a linear flame front over a pine needle fuel bed: The role of convection cooling. Proc. Comb. Inst. 35 (3):2691–98. doi:10.1016/j.proci.2014.05.100.
  • Liu, N. A., J. M. Wu, H. X. Chen, X. D. Xie, H. L. Zhang, B. Yao, J. P. Zhu, and Y. L. Shan. 2014. Effect of slope on spread of a linear flame front over a pine needle fuel bed: Experiments and modeling. Int. J. Wildland Fire 23 (8):1087–96. doi:10.1071/WF12189.
  • Loboda, E. L., V. V. Reino, and M. V. Agafontsev. 2015. Choice of a spectral range for measuring temperature fields in a flame and recording high-temperature objects screened by the flame using IR diagnostic methods. Russ. Phys. J. 58 (2):278–82. doi:10.1007/s11182-015-0493-x.
  • Lyons, P. R. A., and R. O. Weber. 1993. Geometrical effects on flame spread rate for wildland fine fuels. Combust. Sci. Technol. 89 (1–4):153–65. doi:10.1080/00102209308924106.
  • Marcelli, T., P. A. Santoni, A. Simeoni, E. Leoni, and B. Porterie. 2004. Fire spread across pine needle fuel beds: Characterization of temperature and velocity distributions within the fire plum. Int. J. Wildland Fire 13 (1):37–48. doi:10.1071/WF02065.
  • Mell, W., A. Maranghides, R. McDermott, and S. Manzello. 2009. Numerical simulation and experiments of burning Douglas fir trees. Combust. Flame 156 (10):2023–41. doi:10.1016/j.combustflame.2009.06.015.
  • Mell, W., M. A. Jenkins, J. Gould, and P. Cheney. 2007. A physics-based approach to modeling grassland fires. Int. J. Wildland Fire 16 (1):1–22. doi:10.1071/WF06002.
  • Morandini, F., A. Simeoni, P. A. Santoni, and J. H. Balbi. 2005. A model for the spread of fire across a fuel bed incorporating the effects of wind and slope. Combust. Sci. Technol. 177 (7):1381–418. doi:10.1080/00102200590950520.
  • Morandini, F., P. A. Santoni, and J. H. Balbi. 2000. Validation study of a two dimensional model of fire spread. Combust. Sci. Technol. 157 (1):141–65. doi:10.1080/00102200008947314.
  • Morvan, D., and J. L. Dupuy. 2001. Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust. Flame 127 (1–2):1981–94. doi:10.1016/S0010-2180(01)00302-9.
  • Morvan, D., and J. L. Dupuy. 2004. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame 138 (3):199–210. doi:10.1016/j.combustflame.2004.05.001.
  • Morvan, D. 2013. Numerical study of the effect of fuel moisture content (FMC) upon the propagation of a surface fire on a flat terrain. Fire Saf. J. 58:121–31. doi:10.1016/j.firesaf.2013.01.010.
  • Naresh, K., A. Kumar, O. P. Korobeinichev, A. G. Shmakov, and K. N. Osipova. 2018. Downward flame spread along a single pine needle: Numerical modelling. Combust. Flame 197:161–81. doi:10.1016/j.combustflame.2018.07.019.
  • Pagni, P. J., and T. G. Peterson. 1973. Flame spread through porous fuels. Sym. (Int.) Combust. 14 (1):1099–107. doi:10.1016/S0082-0784(73)80099-2.
  • Porterie, B., J. L. Consalvi, J. C. Loraud, F. Giroud, and C. Picard. 2007. Dynamics of wildland fires and their impact on structures. Combust. Flame 149 (3):314–28. doi:10.1016/j.combustflame.2006.12.017.
  • Santoni, P. A., and J. H. Balbi. 1998. Modelling of two-dimensional fire spread across a sloping fuel bed. Fire Saf. J. 31 (3):201–25. doi:10.1016/S0379-7112(98)00011-3.
  • Santoni, P. A., T. Marcelli, and E. Leoni. 2002. Measurements of fluctuating temperature in a continuous flame spreading across a fuel bed using a double thermocouple probe. Combust. Flame 131 (1–2):47–58. doi:10.1016/S0010-2180(02)00391-7.
  • Simeoni, A., P. A. Santoni, M. Larini, and J. H. Balbi. 2003. Reduction of a multiphase formulation to include a simplified flow in a semi-physical model of fire spread across a fuel bed. Int. J. Therm. Sci. 42 (1):95–105. doi:10.1016/S1290-0729(02)00009-1.
  • Singh, A. V., and M. J. Gollner. 2015. Local burning rates and heat flux for forced flow boundary-layer diffusion flames. AIAA J. 54:408–18. doi:10.2514/1.J054283.
  • Snelling, D. R., Liu, F., Smallwood, G. J. and Gülder, Ö. L. 2004. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 136 (1–2):180–190. doi:10.1016/j.combustflame.2003.09.013
  • Sullivan, A. L., N. C. Surawski, D. Crawford, R. J. Hurley, L. Volkova, C. J. Weston, and C. P. Meyer. 2018. Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecol. Manag. 424:236–45. doi:10.1016/j.foreco.2018.04.039.
  • Teng, H., and Barnard, M. 2010. Physicochemical characteristics of soot deposits in EGR coolers. SAE Technical Paper 2010-01-0730. doi:10.4271/2010-01-0730
  • Viegas, D. X., M. Almeida, J. Raposo, R. Oliveira, C. X. Viegas . 2014. Ignition of mediterranean fuel beds by several types of firebrands. Fire Techol. 50 (1):61–77. doi:10.1007/s10694-012-0267-8.
  • Weber, R. O. 1990. Modelling fire spread through fuel beds. Prog. Energy Combust. Sci. 17:67–82. doi:10.1016/0360-1285(91)90003-6.
  • Xie, X., N. Liu, J. Lei, Y. Shan, L. Zhang, H. Chen, X. Yuan, and H. Li. 2017. Upslope fire spread over a pine needle fuel bed in a trench associated with eruptive fire. Proc. Comb. Inst. 36 (2):3037–44. doi:10.1016/j.proci.2016.07.091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.