210
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Oxygen enrichment effects on CH4-air turbulent flow characteristics in a coaxial swirl burner

, , , &
Pages 2340-2363 | Received 31 Oct 2020, Accepted 12 Dec 2021, Published online: 02 Jan 2022

References

  • Abdulsada, M., N. Syred, A. Griffiths, P. Bowen, and S. Morris 2011. Effect of Swirl number and fuel type upon the combustion limits in swirl combustors, ASME Turbo Expo, American Society of Mechanical Engineers, Paper GT-45544
  • Arasto, A., E. Tsupari, J. Kärki, J. Lilja, and M. Sihvonen. 2014. Oxygen blast furnace with CO2 capture and storage at an integrated steel mill—Part I: Technical concept analysis. Int. J. Greenh. Gas Control 30:140–47. doi:10.1016/j.ijggc.2014.09.004.
  • Baukal, C. E., Jr. 2013. Oxygen-Enhanced Combustion. Second ed. CRC Press.
  • Beér, J. M., and N. A. Chigier. 1972. Combustion aerodynamics, In Applied Sci. Publishers Ltd.
  • Boushaki, T., A. Koched, Z. Mansouri, and F. Lespinasse. 2017b. Volumetric velocity measurements (V3V) on turbulent swirling flows. Flow Meas Instrum 54:46–55.
  • Boushaki, T., N. Merlo, C. Chauveau, and I. Gökalp 2017a. Study of pollutant emissions and dynamics of non-premixed turbulent oxygen enriched flames from a swirl burner. Proceedings of the Combustion Institute, 36( 3), 3959–68
  • Boushaki, T., N. Merlo, S. de Persis, C. Chauveau, and I. Göalp. 2019. Experimental investigation of CH4-air-O2 turbulent swirling flames by S-PIV. Exp. Therm. Fluid Sci. 106:87–99. doi:10.1016/j.expthermflusci.2019.04.026.
  • Boushaki, T., J. C. Sautet, and B. Labegorre. 2009. Control of flames by radial jet actuators in oxy-fuel burners. Combust. Flame 156:2043–55. doi:10.1016/j.combustflame.2009.06.013.
  • Boushaki, T., J. C. Sautet, L. Salentey, and B. Labegorre. 2007. The behaviour of lifted oxy-fuel flames in burners with separated jets. Int. Com. Heat Mass Transfer 34 (1):8–18. doi:10.1016/j.icheatmasstransfer.2006.09.008.
  • Chakchak, S., A. Hidouri, H. Zaidaoui, M. Chrigui, and T. Boushaki. 2021. Experimental and numerical study of swirling diffusion flame provided by a coaxial burner: Effect of inlet velocity ratio. Fluids 6:159. doi:10.3390/fluids6040159.
  • Cozzi, F., A. Coghe, and R. Sharma. 2018. Analysis of local entrainment rate in the initial region of isothermal free swirling jets by Stereo PIV. Exp Therm Fluid Sci 94:281–94. doi:10.1016/j.expthermflusci.2018.01.013.
  • Daood, S. S., W. Nimmo, P. Edge, and B. M. Gibbs. 2012. Deep-staged, oxygen enriched combustion of coal. Fuel 101:187–96. doi:10.1016/j.fuel.2011.02.007.
  • Ditaranto, M., and J. Hals. 2006. Combustion instabilities in sudden expansion oxy–fuel flames. Combust. Flame 146:493–512. doi:10.1016/j.combustflame.2006.04.015.
  • Ditaranto, M., and T. Oppelt. 2011. Radiative heat flux characteristics of methane flames in oxyfuel atmospheres. Exp. Thermal Fluid Sci 35:1343–50. doi:10.1016/j.expthermflusci.2011.05.002.
  • Feikema, D., R. H. Chen, and J. F. Driscoll. 1991. Blowout of non-premixed flames: Maximum coaxial air velocities achievable, with and without swirl. Combust. Flame 86:347–58. doi:10.1016/0010-2180(91)90128-X.
  • Hidouri, A., M. Chrigui, T. Boushaki, A. Sadiki, and J. Janicka. 2017. Large eddy simulation of two isothermal and reacting turbulent separated oxy-fuel jets. Fuel 192:108–20. doi:10.1016/j.fuel.2016.12.018.
  • Hidouri, A., N. Yahya, T. Boushaki, A. Sadiki, and J. C. Sautet. 2016. Numerical and experimental investigation of turbulent three separated jets. Appl. Therm. Eng. 104:153–61. doi:10.1016/j.applthermaleng.2016.05.021.
  • Kanniche, M., R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. M. Amann, and C. Bouallou. 2010. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. App. Thermal Eng 30:53–62. doi:10.1016/j.applthermaleng.2009.05.005.
  • Kiesewetter, F., M. Konle, and T. Sattelmayer. 2007. Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. J. Eng. Gas Turbines Power 129:929–36. doi:10.1115/1.2747259.
  • Lambert, J., M. Sorin, and J. Paris. 1997. Analysis of oxygen-enriched combustion for steam methane reforming (SMR. Energy 22:817–25. doi:10.1016/S0360-5442(96)00170-3.
  • Lieuwen, T., and B. T. Zinn. 1998. The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Symp. (Int.) Combust. 27 (2):1809–16. doi:10.1016/S0082-0784(98)80022-2.
  • Ma, T., and K. Takeuchi. 2017. Technology choice for reducing emissions: An empirical study of Chinese power plants. Energy Policy 102:362–76. doi:10.1016/j.enpol.2016.12.043.
  • Mansouri, Z., and T. Boushaki. 2018. Experimental and numerical investigation of turbulent isothermal and reacting flows in a non-premixed swirl burner. International Journal of Heat and Fluid Flow 72:200–13. doi:10.1016/j.ijheatfluidflow.2018.06.007.
  • Mansouri, Z., and T. Boushaki. 2019. Investigation of large-scale structures of annular swirling jet in a nonpremixed burner using delayed detached eddy simulation. International Journal of Heat and Fluid Flow 77:217–31. doi:10.1016/j.ijheatfluidflow.2019.04.007.
  • Melo, G. F., P. T. Lacava, and J. A. Carvalho Jr. 1998. A case study of air enrichment in rotary kiln incineration. Int. Com, Heat Mass Transfer 25:681–92. doi:10.1016/S0735-1933(98)00055-4.
  • Merlo, N., T. Boushaki, C. Chauveau, S. de Persis, L. Pillier, B. Sarh, and I. Gökalp. 2013. Experimental study of oxygen enrichment effects on turbulent non-premixed swirling flames. Energy Fuels 27 (10):6191–97. doi:10.1021/ef400843c.
  • Normann, F., K. Andersson, B. Leckner, and F. Johnsson. 2008. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel 87:3579–85. doi:10.1016/j.fuel.2008.06.013.
  • Poinsot, T. 2017. Prediction and control of combustion instabilities in real engines. Proc. Combust.Inst 36 (1):1–28. doi:10.1016/j.proci.2016.05.007.
  • Takagi, T., H. D. Shin, and A. Ishio. 1981. Properties of turbulence in turbulent diffusion flames. Combust. Flame 40:121–40. doi:10.1016/0010-2180(81)90118-8.
  • Telesca, A., M. Marroccoli, N. Ibris, C. Lupiáñez, L. I. Díez, L. M. Romeo, and F. Montagnaro. 2017. Use of oxyfuel combustion ash for the production of blended cements: A synergetic solution toward reduction of CO2 emissions. Fuel Process. Technol 156:211–20. doi:10.1016/j.fuproc.2016.10.026.
  • Von Lavante, E., and J. Yao. 2012. Numerical investigation of turbulent swirling flows in axisymmetric internal flow configuration. Flow Meas. Instrum. 25:63–68. doi:10.1016/j.flowmeasinst.2011.08.005.
  • Wu, K. K., Y. C. Chang, C. H. Chen, and Y. D. Chen. 2010. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 89:2455–62. doi:10.1016/j.fuel.2010.02.002.
  • Yuasa, S. 1986. Effects of swirl on the stability of jet diffusion flames. Combust. Flame 66:181–92. doi:10.1016/0010-2180(86)90090-8.
  • Zaidaoui, H., T. Boushaki, A. Koched, J. C. Sautet, B. Sarh, and I. Gökalp. 2021. Experimental study of EGR dilution and O2 enrichment effects on turbulent non-premixed swirling flames. Combustion Science and Technology 193:280–89. doi:10.1080/00102202.2020.1786375.
  • Zaidaoui, H., T. Boushaki, J. C. Sautet, C. Chauveau, B. Sarh, and I. Gökalp. 2018. Effects of CO2 dilution and O2 enrichment on non-premixed turbulent CH4-air flames in a swirl burner. Combustion Science and Technology 190 (5):784–802. doi:10.1080/00102202.2017.1409217.
  • Zhou, H., T. Ren, and Y. Yang. 2015. Impact of OFA on combustion and NOx emissions of a large-scale laboratory furnace fired by a heavy-oil swirl burner. Appl. Therm. Eng 90:994–1006. doi:10.1016/j.applthermaleng.2015.07.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.