216
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On Unraveling Community Ignition Processes: Joint Influences of Firebrand Showers and Radiant Heat Applied to Fuel Beds

&
Pages 2989-3002 | Received 13 Apr 2021, Accepted 08 Dec 2021, Published online: 02 Jan 2022

References

  • Davey, S. M., and A. Sarre. 2020. Editorial: The 2019/20 Black Summer bushfires. Aust. For. 83 (2):47–51. doi:10.1080/00049158.2020.1769899.
  • Guanteaume, A., C. Lampin-Maillet, M. Guijarro, C. Hernando, M. Jappiot, T. Fonturbel, P. Pérez-Gorostiaga, and J. A. Vega. 2009. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildland Fire 18 (8):951–69. doi:10.1071/WF07111.
  • Johnston, L. M., Blanchi, R., Jappiot, M., et al. 2019. Wildland-Urban interface. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, ed. S. L. Manzello, Cham: Springer. doi:10.1007/978-3-319-51727-8_130-1.
  • Manzello, S. L., K. Almand, E. Guillaume, , et al, et al. 2018. FORUM position paper - The Growing Global Wildland-Urban Interface (WUI) Fire Problem: Priority needs for research. Fire Saf. J. 100:64–66. doi:10.1016/j.firesaf.2018.07.003.
  • Manzello, S. L., S. H. Park, S. Suzuki, J. R. Shields, and Y. Hayashi. 2011. Experimental investigation of structure vulnerabilities to firebrand showers. Fire Saf. J. 46 (8):568–78. doi:10.1016/j.firesaf.2011.09.003.
  • Manzello, S. L., and S. Suzuki. 2016. Special issue on operation Tomodachi—Fire research. Fire. Technol. 52 (4):955–57. doi:10.1007/s10694-016-0587-1.
  • Manzello, S. L., and S. Suzuki, 2017. Generating Firebrand showers characteristic of burning structures., 36: 3247–52 doi:10.1016/j.proci.2016.07.009.
  • Manzello, S. L., S. Suzuki, M. G. Gollner, and A. C. Fernandez-Pello. 2020. Role of Firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 76:100801. doi:10.1016/j.pecs.2019.100801.
  • Manzello, S. L., T. G. Cleary, J. R. Shields, and J. C. Yang. 2006. On the ignition of fuel beds by firebrands. Fire Mater. 30 (1):77–87. doi:10.1002/fam.901.
  • Manzello, S. L. 2014. Enabling the investigation of structure vulnerabilities to wind- driven firebrand showers in Wildland-Urban interface (WUI) fires. Fire Saf. Sci. 11:83–96. doi:10.3801/IAFSS.FSS.11-83.
  • Pharoah, R. 2009. Fire risk in informal settlements in Cape Town, South Africa. In Disaster risk reduction: Cases from Urban Africa, ed. W. Pelling, 105–25. London: Earthscan.
  • Reszka, P., and A. Fuentes. 2015. The great Valparaiso fire and fire safety management in Chile. Fire Technol 51 (4):753–58. doi:10.1007/s10694-014-0427-0.
  • Suzuki, S., and S. L. Manzello. 2017. Experiments to provide the scientific basis for laboratory standard test methods for Firebrand exposure. Fire Saf. J. 91:784–90.
  • Suzuki, S., and S. L. Manzello. 2018. Characteristics of Firebrands collected from actual urban fires. Fire. Technol. 54 (6):1533–46. doi:10.1007/s10694-018-0751-x.
  • Suzuki, S., and S. L. Manzello. 2020. Role of accumulation for the ignition of fuel beds by Firebrands. Appl. Eng. Combust. Sci. 1-4 100002 doi:10.1016/j.jaecs.2020.100002 .
  • Suzuki, S., and S. L. Manzello. 2021a. Ignition vulnerabilities of combustibles around houses to Firebrand showers: Further comparison of experiments. Sustainability 13 (4):2136. doi:10.3390/su13042136.
  • Suzuki, S., and S. L. Manzello. 2021b. Investigating coupled effect of radiative heat flux and Firebrand showers on ignition of fuel beds. Fire. Technol. 57 (2):683–97. doi:10.1007/s10694-020-01018-5.
  • Syphard, A. D., and J. E. Keeley. 2019. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2 (3):49. doi:10.3390/fire2030049.
  • Urban, J. L., J. Song, S. Santamaria, and A. C. Fernandez-Pello. 2019. Ignition of a spot smolder in a moist fuel bed by a firebrand. Fire Saf. J. 108:102833. Article 102833. doi:10.1016/j.firesaf.2019.102833.
  • Urban, J., C. Zak, J. Song, and A. C. Fernandez-Pello. 2017. Smoldering spot ignition of natural fuels by a hot metal particle. Proc. Combust. Inst. 36 (2):3211–18. doi:10.1016/j.proci.2016.09.014.
  • Viegas, D. X., Almeida, M., Raposo, J. et al, et al. 2014. Ignition of Mediterranean fuel beds by several types of firebrands. Fire. Technol. 50(1):61–78. doi:10.1007/s10694-012-0267-8.
  • Wang, S., X. Huang, H. Chen, and N. Liu. 2017. Interaction between flaming and smoldering in hot-particle ignition of forest fuels and effects of moisture and wind. Int. J. Wildland Fire 26 (1):71–81. doi:10.1071/WF16096.
  • Wei, F., Z. Peng, and H. Chen 2021. Ignition of pine needle fuel bed by the coupled effects of a hot metal particle and thermal radiation Proceedings of the Combustion Institute . , 38: 5101–08 doi:10.1016/j.proci.2020.05.032.
  • Yin, P., N. Liu, H. Chen, J. S. Lozano, and Y. Shan. 2014. New correlation between ignition time and moisture content for pine needles attacked by firebrands. Fire. Technol. 50 (1):79–91. doi:10.1007/s10694-012-0272-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.