450
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Wind Effects on Smoldering Behavior of Simulated Wildland Fuels

, , , , , , , ORCID Icon & show all
Pages 3212-3229 | Received 08 Apr 2021, Accepted 12 Dec 2021, Published online: 05 Jan 2022

References

  • Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113 (42):11770–75. doi:10.1073/pnas.1607171113.
  • Albini, F. A. 1976 Estimating Wildfire Behavior and Effects. USDA Forest Service General Technical Report INT-30.
  • Albini, F. A., and E. D. Reinhardt. 1995. modeling ignition and burning rate of large woody natural fuels. Int J Wildland Fire 5 (2):81–91. doi:10.1071/WF9950081.
  • Albini, F. A., and E. D. Reinhardt. 1997. Improved calibration of a large fuel burnout model. Int J Wildland Fire 7 (1):21–28. doi:10.1071/WF9970021.
  • Albini, F. A. 1979. Estimating windspeeds for predicting wildland fire behavior. Forest Service, US: Intermountain Forest and Range Experiment Station.
  • Boonmee, N., and J. G. Quintiere 2002 Glowing and flaming autoignition of wood. Proceedings of the Combustion Institute, 29, 289–96.
  • Byram, G. M., Clemens, H.B., Elliott, E.R., George, P.M. 29 June , . 1964 An Experimental Study of Model Fires: Technical Report No. 3 . . : Macon, Georgia: USDA Forest Service, Southeastern Forest Experiment Station, Southern Forest Fire Laboratory.
  • Croce, P. A., and Y. Xin. 2005. Scale modeling of quasi-steady wood crib fires in enclosures. Fire Saf Jl 40 (3):245–66. doi:10.1016/j.firesaf.2004.12.002.
  • Davies G Matt, Gray A, Rein G and Legg C J. (2013). Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 308 169–177. 10.1016/j.foreco.2013.07.051
  • DESOUZACOSTA F and SANDBERG D. (2004). Mathematical model of a smoldering log. Combustion and Flame, 139(3), 227–238. 10.1016/j.combustflame.2004.07.009
  • Palamba, Pither, M. L. Ramadhan, F. A. Imran, Engkos Achmad Kosasih, Yulianto Sulistyo Nugroho. ”Investigation of smoldering combustion propagation of dried peat.” In AIP Conference Proceedings, vol. 1826, no. 1, p. 020017. AIP Publishing LLC, 2017.Palamba, Pither, and Ramadhan, M. L.
  • Fons, W. L., H. B. Clements, and P. M. George. 1963 Scale effects on propagation rate of laboratory crib fires 9 . , 860–66. Elsevier.
  • Frandsen W. (1991). Heat Evolved From Smoldering Peat. Int. J. Wildland Fire, 1(3), 197 10.1071/WF9910197
  • Frandsen, W. H. 1971. Fire spread through porous fuels from the conservation of energy. Combust Flame 16 (1):9–16. doi:10.1016/S0010-2180(71)80005-6.
  • Froment, G. F., K. B. Bishoff, and J. De Wilde. 2011. . Chemical reactor analysis and design 2 240–67.
  • Gross, D. 1962. Experiments on the burning of cross piles of wood. J Res Nat Bur Stand Sect C: Eng Instrum 66C (2):99. doi:10.6028/jres.066c.010.
  • Hakes, R. S. P., H. Salehizadeh, M. J. Weston-Dawkes, M. J. Gollner, . 2019. Thermal characterization of firebrand piles. Fire Saf J 104:34–42. doi:10.1016/j.firesaf.2018.10.002.
  • Heskestad, C. 1973. Modeling of enclosure fires. Symp (Int) Combust 14 (1):1021–30. doi:10.1016/S0082-0784(73)80092-X.
  • Hess, K. A., C. Cullen, J. Cobian-Iñiguez, J. Ramthun, V. Lenske, D. Magness, J. Bolten, A. Foster, J. Spruce, . 2019. Satellite-based assessment of grassland conversion and related fire disturbance in the Kenai Peninsula, Alaska. Remote Sens 11 (3):283. doi:10.3390/rs11030283.
  • Huang X and Rein G. (2017). Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. Int. J. Wildland Fire, 26(11), 907 10.1071/WF16198
  • Huang, X., F. Restuccia, M. Gramola, G. Rein, . 2016. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combust Flame 168:393–402. doi:10.1016/j.combustflame.2016.01.017.
  • Hyde, J. C., A. M. S. Smith, R. D. Ottmar, E. C. Alvarado, P. Morgan, . 2011. The combustion of sound and rotten coarse woody debris : A review. Int J Wildland Fire. 20(2):163–74. doi:10.1071/WF09113.
  • Keane, R. E., L. M. Holsinger, H. Y. Smith, P. G. Sikkink, . 2020. Drying rates of saturated masticated fuelbeds from Rocky Mountain mixed-conifer stands. Int J Wildland Fire. 29(1):57–69. doi:10.1071/WF19021.
  • Maser, Chris., Anderson, Ralph G., Cromack, Kermit Jr., Williams, Jerry T., and Martin, Robert E. ”Woody Material.” Wildlife habitats in managed forests: the Blue Mountains of Oregon and Washington 553 (1979): 78.
  • McAllister, S., and M. Finney. 2016. Burning Rates of Wood Cribs with Implications for Wildland Fires. Fire Technol 52 (6):1755–77. doi:10.1007/s10694-015-0543-5.
  • McAllister, S. 2019. The Role of Fuel Bed Geometry and Wind on the Burning Rate of Porous Fuels. Front Mech Eng 5 (April):1–9. doi:10.3389/fmech.2019.00011.
  • Ohlemiller, T. J. (1991) ‘Smoldering combustion propagation on solid wood’, Fire Safety Science: Proceedings of the Third International Symposium, 565–74. doi: 10.4324/9780203973493.
  • Ohlemiller, T. J. 1985. Modeling of smoldering combustion propagation. Prog Energy Combust Sci 11 (4):277–310. doi:10.1016/0360-1285(85)90004-8.
  • Pastor E, Oliveras I, Urquiaga-Flores E, Quintano-Loayza J A, Manta M I and Planas E. (2017). A new method for performing smouldering combustion field experiments in peatlands and rich-organic soils. Int. J. Wildland Fire, 26(12), 1040 10.1071/WF17033
  • Rein G, Cohen S and Simeoni A. (2009). Carbon emissions from smouldering peat in shallow and strong fronts. Proceedings of the Combustion Institute, 32(2), 2489–2496. 10.1016/j.proci.2008.07.008
  • Rein, G., X. Huang, F. Restuccia, T. McArdle, . 2017. Detection of landmines in peat soils by controlled smouldering combustion : Experimental proof of concept of O-Revealer. Exp Therm Fluid Sci 88 (February 2016):632–38. doi:10.1016/j.expthermflusci.2017.07.016.
  • Rein, G. 2016. Smoldering Combustion. In SFPE Handbook of Fire Protection Engineering, ed. M. J. Hurley, 581–603. New York, NY:
  • Richter F and Rein G. (2020). A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combustion and Flame, 216 316–325. 10.1016/j.combustflame.2020.02.029
  • Rostami, A., J. Murthy, and M. Hajaligol. 2004. Modeling of smoldering process in a porous biomass fuel rod Fuel . 83:1527–36. doi:10.1016/j.fuel.2003.11.018.
  • Rothermel, R. C. 1972. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA For. Serv. Res. Pap. INT-115, 40.
  • Santoso, M. A., E. G. Christensen, J. Yang, G. Rein, . 2019. Review of the Transition From Smouldering to Flaming Combustion in Wildfires. Front Mech Eng 5(September). doi: 10.3389/fmech.2019.00049.
  • Sohn, H. Y., and J. Szekely. 1972. A structural model for gas-solid reactions with a moving boundary-III. A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chem Eng Sci 27 (4):763–78. doi:10.1016/0009-2509(72)85011-5.
  • Stephens, S. L., B. M. Collins, C. J. Fettig, M. A. Finney, C. M. Hoffman, E. E. Knapp, M. P. North, H. Safford, R. B. Wayman, . 2018. Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire. Biosci 68 (2):77–88. doi:10.1093/biosci/bix146.
  • Thomas, P. H., D. L. Simms, and H. G. Wraight. 1964. Fire spread in wooden Cribs. Fire Saf Sci 537:1.
  • Thomas, P. H. 1965. Fire spread in wooden cribs: Part III the effect of wind. Fire Saf Sci 600:1.
  • Thomas, P. H. 1967. Some aspects of the growth and spread of fire in the open. For Int J For Res 40 (2):139–64. doi:10.1093/forestry/40.2.139.
  • Thomas, P. H. 1971. Rates of spread of some wind-driven fires. For Int J For Res 44 (2):155–75. doi:10.1093/forestry/44.2.155.
  • TORERO J L, FERNANDEZ-PELLO A and KITANO M. (1993). Opposed Forced Flow Smoldering of Polyurethane Foam. Combustion Science and Technology, 91(1–3), 95–117. 10.1080/00102209308907635
  • Torero J and Fernandez-Pello A. (1996). Forward smolder of polyurethane foam in a forced air flow. Combustion and Flame, 106(1–2), 89–109. 10.1016/0010-2180(95)00245-6
  • Torero, J. L., Gerhard, Jason I., Martins, Marcio F., Zanoni, Marco A. B., Rashwan, Terek L., Brown, Joshua K., . 2020. Processes defining smouldering combustion: Integrated review and synthesis. Prog Energy Combust Sci 81. doi:10.1016/j.pecs.2020.100869.
  • Xie Q, Zhang Z, Lin S, Qu Y and Huang X. (2020). Smoldering Fire of High-Density Cotton Bale Under Concurrent Wind. Fire Technol, 56(5), 2241–2256. 10.1007/s10694-020-00975-1
  • Yang J, Chen H and Liu N. (2016). Modeling of Two-Dimensional Natural Downward Smoldering of Peat. Energy Fuels, 30(10), 8765–8775. 10.1021/acs.energyfuels.6b02293

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.