266
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Combustion of Magnesium Wires with Oxygen and Water Vapor

ORCID Icon, , &
Pages 2364-2380 | Received 14 Jun 2021, Accepted 13 Dec 2021, Published online: 28 Dec 2021

References

  • Akiyama, M., K. Nishii, Y. Mannami, M. Murohara, H. Koizumi, and K. Kimiya. July, 2021. Feasibility study of a hybrid thruster using wire-shaped magnesium and water for application to small spacecraft. Journal of the Japan Society for Aeronautical and Spac E Sciences 64(4):1–11.
  • Bergthorson, J. M., Y. Yavor, J. Palecka, W. Georges, M. Soo, J. Vickery, A. J. Higgins, D. L. Frost, and A. J. Higgins. January 2017. Metal-water combustion for clean propulsion and power generation. Applied Energy 186:13–27. doi:10.1016/j.apenergy.2016.10.033.
  • Breiter, A. L., V. M. Mal’tsev, and E. I. Popov. 1978. Models of metal ignition. Combustion, Explosion, and Shock Waves 13 (4):475–85. doi:10.1007/BF00744795.
  • Brzustowski, T., and I. Glassman. January, 1964. Vapor-phase diffusion flames in the combustion of magnesium and aluminum: II. experimental observations in oxygen atmospheres. In Heterogeneous combustion Wolfhard, Hans, Glassman, Irvin, and Green, Leon, 117–58. New York: American Institute of Aeronautics and Astronautics. doi:10.2514/6.1963-490.
  • Carroll, R. J., and D. Ruppert. February, 1996. The use and misuse of orthogonal regression in linear errors-in-variables models. The American Statistician 50 (1):1–6. doi:10.1080/00031305.1996.10473533.
  • Corcoran, A., S. Mercati, H. Nie, M. Milani, L. Montorsi, and E. L. Dreizin. 2013. Combustion of fine aluminum and magnesium powders in water. Combustion and Flame 160 (10):155–60. doi:10.1016/j.combustflame.2013.04.019.
  • Gautham, M. G., and P. A. Ramakrishna. September, 2018. Combustion characteristics of aluminum–water gelled composite propellant. Journal of Propulsion and Power 34 (5):1345–54. doi:10.2514/1.B37011.
  • Gordon, S., and B. J. McBride. 1996. NASA Technical Reports. Accessed17 10 2021. https://ntrs.nasa.gov/citations/19950013764
  • Goroshin, S., J. Mamen, A. Higgins, T. Bazyn, N. Glumac, and H. Krier. January, 2007. Emission spectroscopy of flame fronts in aluminum suspensions. Proceedings of the Combustion Institute 31 (2):2011–19. doi:10.1016/j.proci.2006.07.175.
  • Huang, X., Z. Xia, L. Huang, and J. Hu. 2012. Experimental study on the ignition and combustion characteristics of a magnesium particle in water vapor. Science China Technological Sciences 55 (9):2601–08.
  • Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. 2006. Fundamentals of heat and mass transfer. 6th ed. Chichester, United Kingdom: John Wiley and Sons Ltd.
  • Ingenito, A., and C. Bruno. 2004. Using aluminum for space propulsion. Journal of Propulsion and Power 20 (6):1056–63. doi:10.2514/1.5132.
  • Kittell, D. E., L. J. Groven, T. R. Sippel, T. L. Pourpoint, and S. F. Son. 2013. Dependence of nano-aluminum and water propellant combustion on pH and rheology. Combustion Science and Technology 185 (5):817–34. doi:10.1080/00102202.2012.759948.
  • Kramida, A., Y. Ralchenko, J. Reader, and N. A. Team (2019). NIST atomic spectra database (version 5.7.1). Accessed April 17 2020 https://physics.nist.gov/asd
  • Laurendeau, N. M., and I. Glassman. April, 1971. Ignition temperatures of metals in oxygen atmospheres. Combustion Science and Technology 3(2):77–82. doi: 10.1080/00102207108952274.
  • Law, C.-K. April, 1976. Models for metal particle combustion with extended flame zones. Combustion Science and Technology 12 (4–6):113–24. doi:10.1080/00102207608946711.
  • Merzhanov, A., Y. Grigorjev, and Y. Gal’chenko. January, 1977. Aluminium ignition. Combustion and Flame 29 (1):1–14. doi:10.1016/0010-2180(77)90088-8.
  • Merzhanov, A. February, 1975. Thermal theory of metal particle ignition. AIAA J 13 (2):209–14. doi:10.2514/3.49664.
  • Neelakanta, P. S. 1995. Handbook of electromagnetic materials: Monolithic and composite versions and their applications. Boca Raton: CRC Press.
  • Nie, H., M. Schoenitz, and E. L. Dreizin. January, 2016. Oxidation of magnesium: Implication for aging and ignition. The Journal of Physical Chemistry C 120(2):974–83. doi: 10.1021/acs.jpcc.5b08848.
  • Pearse, R. W. B., and A. G. Gaydon. 1976. The identification of molecular spectra. 4th ed. Chapman and Hall: John Wiley & Sons. .
  • Pourpoint, T. L., T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son. 2012. Feasibility study and demonstration of an aluminum and ice solid propellant. International Journal of Aerospace Engineering 2012 (August):1–11. doi:10.1155/2012/874076.
  • Rozenband, V., and N. Vaganova. January, 1992. A strength model of heterogeneous ignition of metal particles. Combustion and Flame 88 (1):113–18. doi:10.1016/0010-2180(92)90011-D.
  • Shancita, I., N. G. Vaz, G. D. Fernandes, A. J. Aquino, D. Tunega, and M. L. Pantoya. April, 2021. Regulating magnesium combustion using surface chemistry and heating rate. Combustion and Flame 226:419–29. doi:10.1016/j.combustflame.2020.12.024.
  • Takayama, K., T. Watanabe, Y. Yano, and A. Kakami (2019). Performance of hybrid microthruster using powder fuel. 32nd international symposium on space technology and science, Fukui, Japan, 2019–a–30.
  • Takeno, T., and S. Yuasa. February, 1980. Ignition of magnesium and magnesium-aluminum alloy by impinging hot-air stream. Combustion Science and Technology 21 (3–4):109–21. doi:10.1080/00102208008946924.
  • Valencia, J. J., and P. N. Quested. 2008. Thermophysical properties, ASM handbook, Ed. ASM Handbook Committee, Vol. 15. Materials Park, Ohio, USA: ASM International.
  • Waters, D. F., C. P. Cadou, and W. E. Eagle. May, 2013. Quantifying unmanned undersea vehicle range improvement enabled by aluminum–water power system. Journal of Propulsion and Power 29 (3):675–85. doi:10.2514/1.B34701.
  • Wollmark, S., and Y. Yavor. 2019. Burning rates of nanoaluminum–water solid propellants at various pressures. Journal of Propulsion and Power 35 (1):173–81. doi:10.2514/1.B37098.
  • Yang, C.-B., Y. Tian, T. Qu, B. Yang, B.-Q. Xu, and Y.-N. Dai. March, 2014. Analysis of the behavior of magnesium and CO vapor in the carbothermic reduction of magnesia in a vacuum. Journal of Magnesium and Alloys 2 (1):50–58. doi:10.1016/j.jma.2014.02.003.
  • Yoshida, T., and S. Yuasa. 2000. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream. Proceedings of the Combustion Institute 28 (2):2735–41. doi:10.1016/S0082-0784(00)80694-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.