189
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Reaction-Diffusion Manifolds (REDIM) Method for Ignition by Hot Gas and Spark Ignition Processes in Counterflow Flame Configurations

ORCID Icon & ORCID Icon
Pages 2400-2422 | Received 10 Aug 2021, Accepted 13 Dec 2021, Published online: 30 Dec 2021

References

  • Alvarez, C. E. C., G. E. Couto, V. R. Roso, A. B. Thiriet, and R. M. Valle. 2018. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 128:107–20. doi:10.1016/j.applthermaleng.2017.08.118.
  • Benzinger, M.-S., R. Schießl, and U. Maas. 2017. A versatile coupled progress variable/REDIM model for auto-ignition and combustion. Proceedings of the Combustion Institute 360 (3):3613–21. doi:10.1016/j.proci.2016.07.073.
  • Biswas, S. 2018. Physics of turbulent jet ignition: Mechanisms and dynamics of ultra-lean combustion. Springer.
  • Boyce, M. P. 2011. Gas turbine engineering handbook. Elsevier.
  • Bykov, V., and U. Maas. 2007. The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theory Modelling 110 (6):839–62. doi:10.1080/13647830701242531.
  • Bykov, V., and U. Maas. 2009. Investigation of the hierarchical structure of kinetic models in ignition problems. Zeitschrift für physikalische chemie 2230 (4–5):461–79. doi:10.1524/zpch.2009.6039.
  • Bykov, V., A. Neagos, A. Klimenko, and U. Maas. 2015. Hierarchical structure of slow manifolds of reacting flows. Zeitschrift für physikalische Chemie 2290 (6):833–56. doi:10.1515/zpch-2014-0599.
  • Chakraborty, N., E. Mastorakos, and R. Cant. 2007. Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study. Combustion Science and Technology 1790 (1–2):293–317. doi:10.1080/00102200600809555.
  • Coats, C., and A. Richardson. 2000. Nonpremixed combustion in turbulent mixing layers part 1: Flame characteristics. Combustion and Flame 1220 (3):253–70. doi:10.1016/S0010-2180(00)00125-5.
  • Dahms, R., C. Felsch, O. Röhl, and N. Peters. 2011. Detailed chemistry flamelet modeling of mixed-mode combustion in spark-assisted HCCI engines. Proceedings of the Combustion Institute 330 (2):3023–30. doi:10.1016/j.proci.2010.08.005.
  • Darabiha, N., S. Candel, and F. Marble. 1986. The effect of strain rate on a premixed laminar flame. Combustion and Flame 640 (2):203–17. doi:10.1016/0010-2180(86)90057-X.
  • Domingo, P., and L. Vervisch. 1996. Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures. In Symposium (International) on Combustion, Vol. 26. 233–40. Elsevier.
  • Fischer, S., D. Markus, A. Ghorbani, and U. Maas. 2017a. Pdf simulations of the ignition of hydrogen/air, ethylene/air and propane/air mixtures by hot transient jets. Zeitschrift für Physikalische Chemie 2310 (10):1773–96. doi:10.1515/zpch-2016-0904.
  • Fischer, S., D. Markus, and U. Maas. 2017b. Numerical investigation of the ignition of diethyl ether/air and propane/air mixtures by hot jets. Journal of Loss Prevention in the Process Industries 49:832–38. doi:10.1016/j.jlp.2017.03.010.
  • Ganter, S., C. Straßacker, G. Kuenne, T. Meier, A. Heinrich, U. Maas, and J. Janicka. 2018. Laminar near-wall combustion: Analysis of tabulated chemistry simulations by means of detailed kinetics. International Journal of Heat and Fluid Flow 70:259–70. doi:10.1016/j.ijheatfluidflow.2018.02.015.
  • Ghorbani, A., G. Steinhilber, D. Markus, and U. Maas. 2014. Numerical investigation of ignition in a transient turbulent jet by means of a PDF method. Combustion Science and Technology 1860 (10–11):1582–96. doi:10.1080/00102202.2014.936762.
  • Ghorbani, A., G. Steinhilber, D. Markus, and U. Maas. 2015. Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a PDF/REDIM method. Proceedings of the Combustion Institute 350 (2):2191–98. doi:10.1016/j.proci.2014.06.104.
  • Giampaolo, T. 2020. Gas turbine handbook: Principles and practice. CRC press.
  • Gicquel, O., N. Darabiha, and D. Thévenin. 2000. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute 280 (2):1901–08. doi:10.1016/S0082-0784(00)80594-9.
  • Givi, P., W.-H. Jou, and R. W. Metcalfe. 1988. Flame extinction in a temporally developing mixing layer. In Symposium (International) on Combustion, Vol. 21. 1251–61. Elsevier.
  • Göktolga, M. U., J. A. van Oijen, and L. P. H. de Goey. 2017. Modeling MILD combustion using a novel multistage FGM method. Proceedings of the Combustion Institute 360 (3):4269–77. doi:10.1016/j.proci.2016.06.004.
  • Golda, P., A. Blattmann, A. Neagos, V. Bykov, and U. Maas. 2020. Implementation problems of manifolds-based model reduction and their generic solution. Combust. Theory Modelling 240 (3):377–406. doi:10.1080/13647830.2019.1682198.
  • Goldin, G., Z. Ren, H. Forkel, L. Lu, V. Tangirala, and H. Karim. 2012. Modeling CO with flamelet-generated manifolds: Part 1—Flamelet configuration. In Turbo Expo: Power for land, sea, and air, Vol. 44687. 1141–51. American Society of Mechanical Engineers.
  • Goussis, D. A., and U. Maas. 2011. Model reduction for combustion chemistry. In Turbulent combustion modeling, 193–220. Springer.
  • Granier, J. J., and M. L. Pantoya. 2004. Laser ignition of nanocomposite thermites. Combustion and Flame 1380 (4):373–83. doi:10.1016/j.combustflame.2004.05.006.
  • Gupta, H., O. J. Teerling, and J. A. van Oijen. 2021. Effect of progress variable definition on the mass burning rate of premixed laminar flames predicted by the flamelet generated manifold method. Combust. Theory Modelling 1–15.
  • Heywood, J. B. 2018. Internal combustion engine fundamentals. McGraw-Hill Education.
  • Hilbert, R., and D. Thévenin. 2002. Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combustion and Flame 1280 (1–2):22–37. doi:10.1016/S0010-2180(01)00330-3.
  • Hu, E., X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, and Z. Huang. 2015. Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel 158:1–10. doi:10.1016/j.fuel.2015.05.010.
  • Iegorov, R., P. A. Strizhak, and M. Y. Chernetskiy The review of ignition and combustion processes for water-coal fuels. In EPJ Web of Conferences, volume 110, 1024. EDP Sciences, 2016.
  • Jiang, L. J., S. S. Shy, M. T. Nguyen, S. Y. Huang, D. W. Yu, et al. 2018. Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion. Combustion and Flame 187:87–95. doi:10.1016/j.combustflame.2017.09.006.
  • Jones, W. P., and A. Tyliszczak. 2010. Large eddy simulation of spark ignition in a gas turbine combustor. Flow, Turbulence and Combustion 850 (3):711–34. doi:10.1007/s10494-010-9289-9.
  • Kim, S. O., M. B. Luong, J. H. Chen, and C. S. Yoo. 2015. A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature. Combustion and Flame 1620 (3):717–26. doi:10.1016/j.combustflame.2014.09.001.
  • Kreutz, T., and C. Law. 1996. Ignition in nonpremixed counterflowing hydrogen versus heated air: Computational study with detailed chemistry. Combustion and Flame 1040 (1–2):157–75. doi:10.1016/0010-2180(95)00121-2.
  • Løvås, T. 2009. Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis. Combustion and Flame 1560 (7):1348–58. doi:10.1016/j.combustflame.2009.03.009.
  • Maas, U. 1998. Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput Vis Sci 10 (2):69–81. doi:10.1007/s007910050007.
  • Maas, U., and S. B. Pope. 1992. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame 880 (3–4):239–64. doi:10.1016/0010-2180(92)90034-M.
  • Maas, U., and A. S. Tomlin. 2013. Time-scale splitting-based mechanism reduction. In Cleaner combustion, 467–84. Springer.
  • Maas, U., and J. Warnatz. 1988. Ignition processes in hydrogen- oxygen mixtures. Combustion and Flame 740 (1):53–69. doi:10.1016/0010-2180(88)90086-7.
  • Maas, U., and J. Warnatz. 1989. Ignition processes in carbon-monoxide-hydrogen-oxygen mixtures. In Symposium (International) on Combustion, Vol. 22. 1695–704. Elsevier.
  • Malé, Q., G. Staffelbach, O. Vermorel, A. Misdariis, F. Ravet, and T. Poinsot. 2019. Large eddy simulation of pre-chamber ignition in an internal combustion engine. Flow, Turbulence and Combustion 1030 (2):465–83. doi:10.1007/s10494-019-00026-y.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Progress in Energy and Combustion Science 350 (1):57–97.
  • Michel, J.-B., O. Colin, and D. Veynante. 2008. Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame 1520 (1–2):80–99. doi:10.1016/j.combustflame.2007.09.001.
  • Milovanovic, N., and R. Chen. 2001. A review of experimental and simulation studies on controlled auto-ignition combustion.
  • Naegelin, D. W., and L. G. Dodge. 1991. Ignition study in a gas turbine combustor. Combustion Science and Technology 800 (4–6):165–84. doi:10.1080/00102209108951784.
  • Oijen, J. V., and L. D. Goey. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science and Technology 1610 (1):113–37. doi:10.1080/00102200008935814.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science 100 (3):319–39. doi:10.1016/0360-1285(84)90114-X.
  • Pope, S. B. 1985. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science 110 (2):119–92. doi:10.1016/0360-1285(85)90002-4.
  • Reitz, R. D., and G. Duraisamy. 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science 46:12–71. doi:10.1016/j.pecs.2014.05.003.
  • Richardson, E., and E. Mastorakos. 2007. Numerical Investigation of forced ignition in laminar counterflow non-premixed methane-air flames. Combustion Science and Technology 1790 (1–2):21–37. doi:10.1080/00102200600805892.
  • Sadanandan, R., D. Markus, R. Schießl, U. Maas, J. Olofsson, H. Seyfried, M. Richter, and M. Aldén. 2007. Detailed investigation of ignition by hot gas jets. Proceedings of the Combustion Institute 310 (1):719–26. doi:10.1016/j.proci.2006.08.027.
  • Stahl, G., and J. Warnatz. 1991. Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets. Combustion and Flame 850 (3–4):285–99. doi:10.1016/0010-2180(91)90134-W.
  • Starikovskaia, S. M. 2006. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys. 390 (16):R265. doi:10.1088/0022-3727/39/16/R01.
  • Strassacker, C., V. Bykov, and U. Maas. 2019. Parametrization and projection strategies for manifold based reduced kinetic models. Proceedings of the Combustion Institute 370 (1):763–70. doi:10.1016/j.proci.2018.06.186.
  • Sun, C., C. Sung, C. K. Law, et al. 1996. Response of counterflow premixed and diffusion flames to strain rate variations at reduced and elevated pressures. In Symposium (International) on Combustion, Vol. 26. 1111–20. Elsevier.
  • Sung, C., J. Liu, and C. Law. 1996. On the scalar structure of nonequidiffusive premixed flames in counterflow. Combustion and Flame 1060 (1–2):168–83. doi:10.1016/0010-2180(95)00249-9.
  • Tang, Y., M. Hassanaly, V. Raman, B. A. Sforzo, S. Wei, and J. M. Seitzman Simulation of gas turbine ignition using large eddy simulation approach. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection, 2018.
  • Taylor, C. F. 1985. The internal-combustion engine in theory and practice: Combustion, fuels, materials, design, Vol. 2. MIT press.
  • Toulson, E., H. J. Schock, and W. P. Attard. 2010. A review of pre-chamber initiated jet ignition combustion systems.
  • Turányi, T., and A. S. Tomlin. 2014. Analysis of kinetic reaction mechanisms, Vol. 20. Springer.
  • UCSD. 2014. Chemical-kinetic mechanisms for combustion applications, san diego mechanism web page, mechanical and aerospace engineering (Combustion research).
  • Van Oijen, J., A. Donini, R. Bastiaans, J. Ten Thije Boonkkamp, and L. De Goey. 2016. State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress in Energy and Combustion Science 57:30–74. doi:10.1016/j.pecs.2016.07.001.
  • Varga, T., C. Olm, T. Nagy, I. G. Zsély, É. Valkó, R. Pálvölgyi, H. J. Curran, and T. Turányi. 2016. Development of a joint hydrogen and syngas combustion mechanism based on an optimization approach. International Journal of Chemical Kinetics 480 (8):407–22. doi:10.1002/kin.21006.
  • Vasavan, A., P. de Goey, and J. van Oijen. 2020. A novel method to automate FGM progress variable with application to igniting combustion systems. Combust. Theory Modelling 240 (2):221–44. doi:10.1080/13647830.2019.1673902.
  • Wang, Y., and C. Rutland. 2007. Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets. Combustion and Flame 1490 (4):353–65. doi:10.1016/j.combustflame.2007.03.005.
  • Wen, X., L. Dressler, A. Dreizler, A. Sadiki, J. Janicka, and C. Hasse. 2021. Flamelet LES of turbulent premixed/stratified flames with H2 addition. Combustion and Flame 230:111428. doi:10.1016/j.combustflame.2021.111428.
  • Wu, C., C. Yu, and R. Schießl Experimental and simulation studies on the influence of hydrogen addition on the lean flammability limits of methane/air mixtures. In 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2019.
  • Wu, L., J. Lane, N. Cernansky, D. Miller, A. Fridman, and A. Y. Starikovskiy. 2011. Plasma-assisted ignition below self-ignition threshold in methane, ethane, propane and butane-air mixtures. Proceedings of the Combustion Institute 330 (2):3219–24. doi:10.1016/j.proci.2010.06.003.
  • Yu, C., P. Breda, M. Pfitzner, and U. Maas. 2021. Coupling of mixing models with manifold based simplified chemistry in PDF modeling of turbulent reacting flows. Proceedings of the Combustion Institute 380 (2):2645–53. doi:10.1016/j.proci.2020.06.132.
  • Yu, C., V. Bykov, and U. Maas. 2019. Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proceedings of the Combustion Institute 370 (2):2183–90. doi:10.1016/j.proci.2018.05.126.
  • Yu, C., X. Li, C. Wu, A. Neagos, and U. Maas. 2020a. Automatic construction of REDIM reduced chemistry with a detailed transport and its application to CH4 counterflow flames. Energy & Fuels 340 (12):16572–84. doi:10.1021/acs.energyfuels.0c02539.
  • Yu, C., F. Minuzzi, and U. Maas. 2020b. REDIM reduced chemistry for the simulation of counterflow diffusion flames with oscillating strain rates. Combust. Theory Modelling 240 (4):682–704. doi:10.1080/13647830.2020.1739336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.