306
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Explosion Law of Purge Gas and Its Application in Coal Chemical Industry

, , , , , & show all
Pages 2423-2441 | Received 10 Sep 2021, Accepted 12 Dec 2021, Published online: 31 Dec 2021

References

  • Abdelhafez, A., S. S. Rashwan, M. A. Nemitallah, and M. A. Habib. 2018. Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. Appl Energ 215:63–74. doi:10.1016/j.apenergy.2018.01.097.
  • Anggono, W., A. Hayakawa, E. C. Okafor, G. J. Gotama, and S. Wongso. 2020. Laminar burning velocity and markstein length of CH4/CO2/air premixed flames at various equivalence ratios and CO2 concentrations under elevated pressure. Combust. Sci. Technol. doi:10.1080/00102202.2020.1737032.
  • Braun, A., F. E. Huggins, S. Seifert, J. Ilavsky, N. Shah, K. E. Kelly, A. Sarofim, and G. P. Huffman. 2004. Size-range analysis of diesel soot with ultra-small angle x-ray scattering. Combust. Flame 137 (1–2):63–72. doi:10.1016/j.combustflame.2004.01.003.
  • Cai, F., Z. Tan, H. Meng, and R. Cai. 2009. Chemical safety engineering, 57–59. Beijing: Science Press.
  • Cao, Y., M. Dahari, I. Tlili, and A. Raise. 2020. Investigation on the laminar flame speed of CH4/CO2/air mixture at atmospheric and high pressures using schlieren photography. Int. J. Hydrogen. Energ 45 (55):31151–61. doi:10.1016/j.ijhydene.2020.08.061.
  • Cashdollar, K. L., I. A. Zlochower, M. Gregory, A. T. R, and M. Hertzberg. 2000. Flammability of methane, propane, and hydrogen gases. J. Loss. Prevent. Proc 13:327–40. doi:10.1016/S0950-4230(99)00037-6.
  • Chen, J. N., G. Y. Chen, A. C. Zhang, H. X. Deng, X. P. Wen, F. H. Wang, W. Sheng, and H. X. Zheng. 2021. Numerical simulation of the effect of CH4/CO concentration on combustion characteristics of low calorific value syngas. ACS Omega 06 (8):5754–63. doi:10.1021/acsomega.0c06176.
  • Cui, S., F. Niu, N. J. Wang, J. M. Zhou, J. P. Wang, and J. S. Liu. 2020. Study on desulfurization mechanism of adsorbents prepared by high ratio circulating fly ash and lime. Fuel 277:118051. doi:10.1016/j.fuel.2020.118051.
  • De Persis, S., M. Idir, J. Molet, and L. Pillier. 2019. Effect of hydrogen addition on NOX formation in high-pressure counter-flow premixed CH4/air flames. Int. J. Hydrogen. Energ 44 (41):23484–502. doi:10.1016/j.ijhydene.2019.07.002.
  • Ding, Y. J., W. J. Han, Q. H. Chai, S. H. Ynag, and W. Shen. 2013. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction. Energy Policy 55:445–53. doi:10.1016/j.enpol.2012.12.030.
  • Duva, B. C., L. E. Chance, and E. Toulson. 2020. Dilution effect of different combustion residuals on laminar burning velocities and burned gas markstein lengths of premixed methane/air mixtures at elevated temperature. Fuel 267:117153. doi:10.1016/j.fuel.2020.117153.
  • Duva, B. C., Y. C. Wang, L. E. Chance, and E. Toulson. 2021. Laminar flame characteristics of sequential two-stage combustion of premixed methane/air flames. J. Eng. Gas. Turb. Power 143:061029. doi:10.1115/1.4048450.
  • Gokulakrishnan, P., C. Fuller, M. Klassen, D. Davidson, and R. Hanson. 2021. Experimental and modeling of autoignition of gaseous hydrocarbon fuels in the presence of H2 and C2H4. Fuel 296. doi:10.1016/j.fuel.2021.120713.
  • Grune, J., K. Sempert, M. Kuznetsov, and T. Jordan. 2021. Experimental investigation of unconfined spherical and cylindrical flame propagation in hydrogen-air mixtures. Int. J. Hydrogen. Energ 46 (23):12487–96. doi:10.1016/j.ijhydene.2020.09.062.
  • Hao, Q. Q., Z. M. Luo, T. Wang, C. Xie, S. Q. Zhang, M. S. Bi, and J. Deng. 2021. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures. Exp. Therm. Fluid. Sci 126:110395. doi:10.1016/j.expthermflusci.2021.110395.
  • Herzler, J., M. Fikri, and C. Schulz. 2020. High-pressure shock-tube study of the ignition and product formation of fuel-rich dimethoxymethane (DMM)/air and CH4 /dmm/air mixtures. Combust. Flame 216:293–99. doi:10.1016/j.combustflame.2020.03.008.
  • Hu, J., and Z. W. Shen. 2011. Experimental research on underwater explosion shockwave characteristics of low energy detonating cord. J. Exp. Mechan. 26:297–302. doi:10.1080/17415993.2010.547197.
  • Huang, C. Y., X. F. Chen, L. J. Liu, H. M. Zhang, B. H. Yuan, and Y. Li. 2021a. The influence of opening shape of obstacles on explosion characteristics of premixed methane-air with concentration gradients. Process. Saf. Environ. 150:305–13. doi:10.1016/j.psep.2021.04.028.
  • Huang, L. J., Z. F. Li, Y. Wang, L. Zhang, Y. L. Su, Z. Zhang, and S. R. Ren. 2021b. Experimental assessment on the explosion pressure of CH4-air mixtures at flammability limits under high pressure and temperature conditions. Fuel 299:120868. doi:10.1016/j.fuel.2021.120868.
  • Ji, P. 2013. Direction and development of the coal chemical technology status quo. Guangdong Chem. Indus. 40:70–71. CNKI:SUN:GDHG.0.2013-08-037.
  • Kenneth, L., Cashdollar, A. Isaac, Zlochower, M. G. Gregory, A. T. Richard, and H. Martin. 2000. Flammability of methane, propane, and hydrogen gases. J. Loss. Prevent. Proc 13:65–89. doi:10.1016/S0950-4230(99)00037-6.
  • Khan, F., A. M. Elbaz, S. Saxena, O. Mannaa, W. L. Robert, and L. William 2021 . Effect of CO2 dilution on methane/air flames at elevated pressures: An experimental and modeling study. Energ. Fuel 35(3): 2639–53 . doi:10.1021/acs.energyfuels.0c03568.
  • Li, J. W., Z. C. Chen, L. K. Li, Y. Y. Qiao, Z. H. Yuan, L. Y. Zeng, and Z. Q. Li. 2021. Study on pore and chemical structure characteristics of atmospheric circulating fluidized bed coal gasification fly ash. J. Clean. Prod 308:127395. doi:10.1016/j.jclepro.2021.127395.
  • Li, R. K., Z. M. Luo, T. Wang, F. M. Cheng, H. F. Lin, and X. C. Zhu. 2020. Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures. Energy 213:118979. doi:10.1016/j.energy.2020.118979.
  • Li, R. Z., and R. J. Si. 2010. Influence of gas concentration on explosion pressure and pressure rise rate. J. Xi’an Univ. Sci. Technol. 30:29–33. doi:10.13800/j.cnki.xakjdxxb.2010.01.011.
  • Li, R. Z. 2010. Study of the influence of ignition energy and inital pressure on the gas explosion characteristics. Shandong Univ. Sci. Technol. 36:48–60. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD0911&filename=1010120579.nh.
  • Li, Y. F. X. Z., and Y. Wang. 2021. Experimental study on the combustion characteristics of premixed methane-hydrogen-air aixtures in a spherical closed chamber. Fuel 299:120885. doi:10.1016/j.fuel.2021.120885.
  • Li, Y. S., M. B. He, and F. N. Shi. 2021. High voltage pulse-enabled coal desulfurization and deashing–part 1: Selective breakdown of mineral matter. Fuel 300:120970. doi:10.1016/j.fuel.2021.120970.
  • Liang, F., K. Zhang, L. Zhang, Y. Zhang, Y. Lei, and X. Sun. 2021. Recent development of electrocatalytic CO2 reduction application to energy conversion. Germany: Small (Weinheim an der Bergstrasse. doi:10.1002/SMLL.202100323.
  • Liu, H. Y. 2014. The research on low concentration gas power generation technology in Huangling mining group. Xi`an Univ. Sci. Technol. 36:56–60. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201501&filename=1014072948.nh.
  • Liu, Q. B. S., Q. Z. Liu, Q. Liu, Y. Zhang, R. N. Xu, X. Y. Wu, and H. Xia. 2020. Walnut wood-derived hierarchically 3D self-assembly of (a%ce–mn) yal2−yox and rapid diffusion character of straight micron channel during hot coal gas desulfurization. Chem. Eng. J 393:124761. doi:10.1016/j.cej.2020.124761.
  • Lu, G. H., Y. H. Bai, P. Lv, J. F. Wang, X. D. Song, W. G. Su, and G. S. Yu. 2021. Insights into the role of calcium during coal gasification in the presence of silicon and aluminum. Fuel 302:121134. doi:10.1016/j.fuel.2021.121134.
  • Ma, C., and D. I. Stern. 2008. China’s changing energy intensity trend: A decomposition analysis. Energy Econ. 30 (3):1037–53. doi:10.1016/j.eneco.2007.05.005.
  • Mahmood, E., V. D. Susan, J. D. Mcmillan, and S. Jack. 2020. Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy 147:111906. doi:10.1016/j.enpol.2020.111906.
  • Murakami, Y., H. Nakamura, T. Tezuka, G. Asai, and K. Maruta. 2021. Reactivity of CO/H2/CH4/air mixtures derived from in-cylinder fuel reformation examined by a micro flow reactor with a controlled temperature profile. Combust. Sci. Technol 193 (2):226–79. doi:10.1080/00102202.2020.1847096.
  • Narvaez, A., D. Chadwick, and L. Kershenbaum. 2019. Performance of small-medium scale polygeneration systems for dimethyl ether and power production. Energy 188:116058. doi:10.1016/j.energy.2019.11605.
  • Nie, B. S., J. Gong, Z. Ge, C. Peng, L. T. Zhang, Y. Fan, R. H. Li, and C. C. Liu. 2021. Experimental study on explosion characteristics of ultra-low concentration methane mixed with dimethyl ether. Combust. Sci. Technol 25 (8):1–23. doi:10.1080/13647830.2020.1833085.
  • Pashchenko, D. 2021. Industrial furnaces with thermochemical waste-heat recuperation by coal gasification. Energy 221:119864. doi:10.1016/j.energy.2021.119864.
  • Ren, C. X. X., X. Zhang, T. Sun, and J. Li. 2017. Overview on the characteristics of explosion limits of cases and gas mixtures. Fire Sci. Technol. 36 (11):1500–03. CNKI:SUN:XFKJ.0.2017-11-008.
  • Rudy, W., and A. Teodorczyk. 2021. Numerical simulations of DDT limits in hydrogen-air mixtures in obstacle laden channel. Energies 14 (1):24. doi:10.3390/en14010024.
  • Saeid, M. H. S., J. Khadem, and S. Emami. 2021. Numerical investigation of the mechanism behind the deflagration to detonation transition in homogeneous and inhomogeneous mixtures of H2-air in an obstructed channel. Int. J. Hydrogen. Energ 46 (41):21657–71. doi:10.1016/j.ijhydene.2021.04.006.
  • Salvi, B. L., K. A. Subramanian, and N. L. Panwar. 2013. Alternative fuels for transportation vehicles: A technical review. Renew. Sust. Energ. Rev 25:404–19. doi:10.1016/j.rser.2013.04.017.
  • Shi, J. R., M. M. Mao, Y. Q. Liu, Y. Liu, and Y. B. Deng. 2020. Influence of chemical kinetics on predictions of performance of syngas production from fuel-rich combustion of CO2/CH4 mixture in a two-layer burner. Front. Chem 7:902. doi:10.3389/fchem.2019.00902.
  • Shin, S., J. K. Lee, and I. B. Lee. 2020. Development and techno-economic study of methanol production from coke-oven gas blended with linz donawitz gas. Energy 200:117506. doi:10.1016/j.energy.2020.117506.
  • Su, B., Z. M. Luo, T. Wang, C. Xie, and F. M. Cheng. 2021. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater 403:123680. doi:10.1016/j.jhazmat.2020.123680.
  • Sun, X. X., and S. X. Lu. 2020. On the mechanisms of flame propagation in methane-air mixtures with concentration gradient. Energy 202:117782. doi:10.1016/j.energy.2020.117782.
  • Tang, L. F., H. D. Fan, S. J. Chen, X. X. Tao, H. He, and X. N. Zhu. 2019. Investigation on the synergistic mechanism of coal desulfurization by ultrasonic with microwave. Energ. Source. Part. A 42 (20):2516–25. doi:10.1080/15567036.2019.1607950.
  • Van Acht, S. C. J., C. Laycock, S. J. W. Carr, J. Maddy, A. J. Guwy, G. Lloyd, and L. F. J. M. 2020. Simulation of integrated novel psa/ehp/c process for high-pressure hydrogen recovery from coke oven gas. Int. J. Hydrogen. Energy 45 (30):15196–212. doi:10.1016/j.ijhydene.2020.03.211.
  • Varghese, R. J., H. Kolekar, and S. Kumar. 2019. Laminar burning velocities of H2/CO/CH4/CO2/N2-air mixtures at elevated temperatures. Int. J. Hydrogen. Energ 44:12188–99. doi:10.1016/j.ijhydene.2019.03.103.
  • Wang, J., Z. Y. Fan, Y. Wu, L. G. Zheng, R. K. Pan, and Y. Wang. 2021a. Effect of abrupt changes in the cross-sectional area of a pipe on flame propagation characteristics of CH4/air mixtures. ACS Omega 06 (23):15126–35. doi:10.1021/acsomega.1c01350.
  • Wang, L. Q., and H. H. Ma. 2021. Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles. Fuel 298:120835. doi:10.1016/j.fuel.2021.120835.
  • Wang, T., H. Liang, Z. M. Luo, B. Su, L. T. Liu, Y. Su, X. Q. Wang, F. M. Cheng, and J. Deng. 2021b. Near flammability limits behavior of methane-air mixtures with influence of flammable gases and nitrogen: An experimental and numerical research. Fuel 294:120550. doi:10.1016/j.fuel.2021.120550.
  • Xiang, G. X., Y. C. Zhang, X. Gao, H. Y. Li, and X. Huang. 2021. Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures. Fuel 295:120615. doi:10.1016/j.fuel.2021.120615.
  • Xiao, Q. P., J. Cheng, B. Zhang, J. Zhou, and W. H. Chen. 2021. Schlieren visualization of the interaction of jet in crossflow and deflagrated flame in hydrogen-air mixture. Fuel 292:120380. doi:10.1016/j.fuel.2021.120380.
  • Xie, Y. L. N. L., Q. Z. Li, and J. H. Wang. 2020. Effects of co addition on laminar flame characteristics and chemical reactions of h2 and ch4 in oxy-fuel (O2/CO2) atmosphere. Int. J. Hydrogen. Energ 45 (39):20472–81. doi:10.1016/j.ijhydene.2019.10.138.
  • Xu, H. J. 2019. Study on the influence of low concentration gas source quality on gas generating set. Min. Safety Environ. Protect. 46 (4):59–63. CNKI:SUN:ENER.0.2019-04-013.
  • Xu, J. X., and W. S. Lin. 2021. Integrated hydrogen liquefaction processes with lng production by two-stage helium reverse brayton cycles taking industrial by-products as feedstock gas. Energy 227:120443. doi:10.1016/j.energy.2021.120443.
  • Xu, J., W. Lin, and S. Xu. 2018. Hydrogen and LNG production from coke oven gas with multi-stage helium expansion refrigeration. Int. J. Hydrogen. Energy 43:12680–87. doi:10.1016/j.ijhydene.2018.05.137.
  • Xu, X. X., Z. X. Liu, and L. Huang. 2011. Experimental study on treatment effects on municipal sewage by the A/O and diatomite nitrogen removal process. Environ. Ecolo. Three Gorge 33 (2):24–26+37. doi:10.14068/j.ceia.2011.02.007.
  • Xu, Y. L., Y. Liu, Y. C. Bu, M. L. Chen, and Y. L. Wang. 2021. Review on the ionic liquids affecting the desulfurization of coal by chemical agents. J. Clean. Prod 284:124788. doi:10.1016/j.jclepro.2020.124788.
  • Yang, F., Q. B. Yu, W. J. Duan, Z. F. Qi, and Q. Qin. 2021. Electrochemical catalytic coal gasification: A novel method. Catal. Commun 150:106261. doi:10.1016/j.catcom.2020.106261.
  • Yilmaz, H., O. Cam, and I. Yilmaz. 2020. Experimental investigation of flame characteristics of H2/CO/CH4/CO2 synthetic gas mixtures. Combust. Sci. Technol. doi:10.1080/00102202.2020.1716219.
  • Zhang, B. X., Y. M. Chen, B. K. Kang, J. F. Qian, X. Chuai, R. F. Peng, Z. P. Li, F. Q. Guo, W. J. Yan, and Y. J. Zhang. 2020a. Hydrogen production via steam reforming of coke oven gas enhanced by steel slag-derived CaO. Int. J. Hydrogen. Energy 45 (24):13231–44. doi:10.1016/j.ijhydene.2020.03.061.
  • Zhang, B., and H. D. Ng. 2015. Explosion behavior of methane-dimethyl ether/air mixtures. Fuel 157:56–63. doi:10.1016/j.fuel.2015.04.058.
  • Zhang, Q., G. Chen, F. Wang, H. Deng, X. Wen, A. Zhang, and W. Sheng. 2020b. Experimental and model analyses of laminar combustion characteristics of variable composition CO/H-H/CH4 mixtures at high N2 and CO2 concentrations. Int. J. Energ. Res 44:7507–24. doi:10.1002/er.5477.
  • Zhao, P., X. Tan, M. Schmidt, A. Wei, and W. X. Huang. 2020. Minimum explosion concentration of coal dusts in air with small amount of CH4/H2/CO under 10kj ignition energy conditions. Fuel 260:116401–116401. doi:10.1016/j.fuel.2019.116401.
  • Zhou, L. 2009. Optimization and analysis of coal-chemical eco-industrial system. Tsinghua University. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD0911&filename=2010215009.nh

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.