210
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of Geometrical Features of Solid Biofuels on the Implementation of the Combustion Process

Pages 2456-2473 | Received 15 Sep 2021, Accepted 15 Dec 2021, Published online: 03 Jan 2022

References

  • Abdulkareem, S., B. A. Hakeem, I. I. Ahmed, T. K. Ajiboye, J. A. Adebisi, and T. Tahaya. 2018. Combustion characteristics of bio-degradable biomass briquettes. J. Eng. Sci. Technol. 13 (9):2779–91.
  • Bauer, R., M. Gölles, T. Brunner, N. Dourdoumas, and I. Obernberger. 2010. Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass Bioenergy 34 (4):417–27. doi:10.1016/j.biombioe.2009.12.005.
  • Brunner, T., I. Obernberger, and R. Scharler 2009. Primary measures for low-emission residential wood combustion-Comparison of old with optimised modern systems. Proceedings of 17th European Biomass Conference and Exhibition, Hamburg, Germany, 1319–28.
  • Bull, S. R. 2001. Renewable energy today and tomorrow. Proc. IEEE 89 (8):1216–26. 8. doi:10.1109/5.940290.
  • CEN/TS 15104:2006. Solid biofuels. Determination of total content of carbon, hydrogen and nitrogen. Instrumental methods.
  • Davies, R. M., and O. A. Davies. 2013. Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton scum as binder. J. Combus. 2013:1–8. Article ID 549894. doi:10.1155/2013/549894.
  • Davies, R. M., O. A. Davies, and U. S. Mohammed. 2013. Combustion characteristics of traditional energy sources and water hyacinth briquettes. Int. J. Sci. Res. Environ. Sci. 1 (7):144–51. doi:10.12983/ijsres-2013-p144-151.
  • Deepak, K. B., and N. A. Jnanesh. 2015. Experimental analysis of physical and fuel characteristics of areca leaves briquette. Int. J. Sci. Res 4 (1):1261–64.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress Energy Combus. Sci. 30 (2):219–30. doi:10.1016/j.pecs.2003.10.004.
  • Demirbas, A. 2008. Importance of biomass energy sources for Turkey. Energy Policy 36 (2):834–42. doi:10.1016/j.enpol.2007.11.005.
  • Demirbaş, A., and A. Şahin. 1998. Evaluation of biomass residue: Briquetting waste paper and wheat straw mixtures. Fuel Process. Technol. 55 (2):175–83. doi:10.1016/S0378-3820(98)00041-1.
  • Dinesha, P., S. Kumar, and M. A. Rosen. 2019. Biomass briquettes as an alternative fuel: A comprehensive review. Energy Technol. 7 (1801011):1–8. doi:10.1002/ente.201801011.
  • Eisenbies, M. H., T. A. Volk, and A. Patel. 2016. Changes in feedstock quality in willow chip piles creat-ed in winter from a commercial scale harvest. Biomass Bioenergy 86:180–90. doi:10.1016/j.biombioe.2016.02.004.
  • EN ISO 16127:2012. Solid biofuels - Determination of length and diameter of pellets. Polish Committee for Standardization: Warsaw, Poland, 2012.
  • EN ISO 18122:2016. Solid biofuels - Determination of ash content. Polish Committee for Standardization: Warsaw, Poland, 2016.
  • EN ISO 18125:2017. Solid biofuels. Determination of calorific value. Polish Committee for Standardization: Warsaw, Poland, 2017.
  • EN ISO 18134-3:2015. Solid biofuels - Determination of moisture content - Oven dry method - Part 3: Moisture in general analysis sample. Polish Committee for Standardization: Warsaw, Poland, 2015.
  • A European Green Deal, 25. 07. 2021 . Striving to be the first climate-neutral continent. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.
  • Ewida, K. T., H. El-Salmawy, N. N. Atta, and M. M. Mahmoud. 2006. A sustainable approach to the recycling of rice straw through pelletization and controlled burning. Clean Technol. Environ. Policy 8 (3):188–97. doi:10.1007/s10098-006-0043-x.
  • Gort, R. 1995. On the propagation of a reaction front in a packed bed: thermal conversion of municipal solid waste and biomass. PhD Thesis. Universiteit Twente, Enchede, The Netherlands.
  • Hassan, S., L. S. Kee, and H. H. Al-Kayiem. 2013. Experimental study of palm oil mill effluent and oil palm frond waste mixture as an alternative biomass fuel. JESTEC 8 (6):703–12.
  • Ito, H. 2017. Influence of size and density of highly densified biomass briquette on combustion behavior. Trans. JSME (In Japanese) 83 (852):1–13. doi:10.1299/transjsme.17-00080.
  • Ito, H., R. Tokunaga, S. Nogami, and M. Miura. 2020. Influence of biomass raw materials on combustion behavior of highly densified single cylindrical biomass briquette. Combus. Sci. Technol. 1–15. doi:10.1080/00102202.2020.1858286.
  • Jach-Nocoń, M., G. Pełka, W. Luboń, T. Mirowski, A. Nocoń, and P. Pachytel. 2021. An assessment of the efficiency and emissions of a pellet boiler combusting multiple pellet types. Energies 14 (15):4465. doi:10.3390/en14154465.
  • Jenkins, B. M., L. L. Baxter, T. R. Miles Jr., and T. R. Miles. 1998. Combustion properties of biomass. Fuel Process. Technol. 54 (1–3):17–46. doi:10.1016/S0378-3820(97)00059-3.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38 (25):4183–95. doi:10.1016/j.atmosenv.2004.04.020.
  • Kishor, K., and N. Singh. 2015. Enhancing the heating properties of coal briquette blending rice husk. Int. J. Sci. Res. Dev. 3 (4):1953–55.
  • Kraszkiewicz, A., A. Przywara, and A. S. Anifantis. 2020. Impact of ignition technique on pollutants emission during the combustion of selected solid biofuels. Energies 13 (10):2664. doi:10.3390/en13102664.
  • McKendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 83 (1):37–46. doi:10.1016/S0960-8524(01)00118-3.
  • Míguez, J. L., J. C. Morán, E. Granada, and J. Porteiro. 2012. Review of technology in small-scale biomass combustion systems in the European market. Renew. Sust. Energ. Rev. 16 (6):3867–75. doi:10.1016/j.rser.2012.03.044.
  • Muazu, R. I., and J. A. Stegemann. 2015. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process. Technol. 133:137–45. doi:10.1016/j.fuproc.2015.01.022.
  • Namba, K., T. Ida, M. Fuchihata, and H. Sano. 2004. Pyrolytic and combustion characteristics of woody bio-pellets. J. Jpn. Inst. Energy 83 (10):788–93. doi:10.3775/jie.83.788.
  • Nussbaumer, T. 2003. Combustion and co-combustion of biomass: Fundamentals, technologies and primary measures for emission reduction. Energy Fuels 17 (6):1510–21. doi:10.1021/ef030031q.
  • Obernberger, I., F. Biedermann, W. Widmann, and R. Riedl. 1997. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12 (3):211–24.
  • Obernberger, I., T. Brunner, and G. Barnthaler. 2006. Chemical properties of solid biofuels–significance and impact. Biomass Bioenergy 30 (11):973–82. doi:10.1016/j.biombioe.2006.06.011.
  • Oladeji, J. T., and O. R. Oyetunji. 2013. Investigations into physical and fuel characteristics of briquettes produced from cassava and yam peels. Int. J. Energy Technol. Policy 3 (7):41–46.
  • Panwar, N. L., S. C. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 15 (3):1513–24. doi:10.1016/j.rser.2010.11.037.
  • Pérez, J. F., A. Melgar, and P. N. Benjumea. 2012. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel 96:487–96. doi:10.1016/j.fuel.2012.01.064.
  • Plíštil, D., M. Brožek, J. Malaťák, A. Roy, and P. Hutla. 2005. Mechanical characteristics of standard fuel briquettes on biomass basis. Agric. Res. Eng. 51 (2):66–72. doi:10.17221/4905-RAE.
  • PN-G-04516:1998. Solid fuels - Determination of volatile matter content by gravimetric. Polish Committee for Standardization: Warsaw, Poland, 1998.
  • PN-G-04584:2001. Solid fuels - Determination of total and ash sulfur content by automatic analyzers. Polish Committee for Standardization: Warsaw, Poland, 2001.
  • Rajaseenivasan, T., V. Srinivasan, G. Syed, and M. Qadir. 2016. An investigation on the performance of sawdust briquette blending with neem powder. Alexandria Eng. J. 55 (3):2833–38. doi:10.1016/j.aej.2016.07.009.
  • Rhén, C., M. Öhman, R. Gref, and I. Wästerlund. 2007. Effect of raw material composition in woody biomass pellets on combustion characteristics. Biomass Bioenergy 31:66–72.
  • Rönnbäck, M., M. Axell, and L. Gustavsson 2000. Combustion processes in a biomass fuel bed- experimental results. Progress in thermochemical biomass conversion, 17–22 September, Tyrol, Austria.
  • Ryu, C., Y. B. Yang, A. Khor, N. E. Yates, V. N. Sharifi, and J. Swithenbank. 2006. Effect of fuel properties on biomass combustion: Part I. Experiments fuel type, equivalence ratio and particle size. Fuel 85 (7–8):1039–46. doi:10.1016/j.fuel.2005.09.019.
  • Saastamoinen, J. J., R. Taipale, M. Horttanainen, and P. Sarkomaa. 2000. Propagation of the ignition front in beds of wood particles. Combust Flame 123 (1–2):214–26. doi:10.1016/S0010-2180(00)00144-9.
  • Shin, D., and S. Choi. 2000. The combustion of simulated waste particles in a fixed bed. Combust Flame 121 (1–2):167–80. doi:10.1016/S0010-2180(99)00124-8.
  • Suryaningsih, S., O. Nurhilal, Y. Yuliah, and C. Mulyana. 2017. Combustion quality analysis of briquettes from variety of agricultural waste as source of alternative fuels. IOP Conf. Ser. Earth Environ. Sci 65:012012. doi:10.1088/1755-1315/65/1/012012.
  • Tucki, K., O. Orynycz, A. Wasiak, A. Świć, L. Mieszkalski, and J. Wichłacz. 2020. Low emissions resulting from combustion of forest biomass in a small scale heating device. Energies 13 (5495):1–18. doi:10.3390/en13205495.
  • Uzun, H., Z. Yıldız, J. L. Goldfarb, and S. Ceylan. 2017. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresour. Technol. 234:122–30. doi:10.1016/j.biortech.2017.03.015.
  • Van der Lans, R. P., L. T. Pedersen, A. Jensen, P. Glarborg, and K. Dam-Johansen. 2000. Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 19 (3):199–208. doi:10.1016/S0961-9534(00)00033-7.
  • Verma, V. K., S. Bram, and J. De Ruyck. 2009. Small scale biomass heating systems: Standards, quality labelling and market driving factors – An EU outlook. Biomass Enginery 33 (10):1393–402. doi:10.1016/j.biombioe.2009.06.002.
  • Verma, V. K., S. Bram, G. Gauthier, and J. De Ruyck. 2011. Evaluation of the performance of a multi-fuel domestic boiler with respect to the existing European standard and quality labels: Part-1. Biomass Bioenergy 35 (1):80–89. doi:10.1016/j.biombioe.2010.08.028.
  • Wierzbicka, A., L. Lillieblad, J. Pagels, M. Strand, A. Gudmundsson, A. Gharibi, E. Swietlicki, M. Sanati, and M. Bohgard. 2005. Particle emissions from district heating units operating on three commonly used biofuels. Atmos. Environ. 39 (1):139–50.
  • Wiinikka, H., and R. Gebart. 2004. Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor. Biomass Bioenergy 27 (6):645–52. doi:10.1016/j.biombioe.2003.08.020.
  • Wiinikka, H., R. Gebart, C. Boman, D. Bostrom, and M. Ohman. 2007. Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel 86 (1–2):181–93. doi:10.1016/j.fuel.2006.07.001.
  • Yang, Y. B., H. Yamauchi, V. Nasserzadeh, and J. Swithenbank. 2003. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed. Fuel 82 (18):2205. doi:10.1016/S0016-2361(03)00145-5.
  • Zakaria, R. 2000. Static incineration bed combustion. PhD Thesis. Department of Chemical and Process Engineering, University of Sheffield, UK.
  • Zawiślak, K., P. Sobczak, A. Kraszkiewicz, I. Niedziółka, S. Parafiniuk, I. Kuna-Broniowska, W. Tanaś, W. Żukiewicz-Sobczak, and S. Obidziński. 2020. The use of lignocellulosic waste in the pro-duction of pellets for energy purposes. Renew. Energy 145:997–1003. doi:10.1016/j.renene.2019.06.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.