138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the evolutionary characteristics of silicified coal functional groups during oxidation/pyrolysis

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 2491-2509 | Received 29 Mar 2021, Accepted 20 Dec 2021, Published online: 06 Jan 2022

References

  • Cui, C. B., S. G. Jiang, and W. Q. Zhang. 2018. Influence of different concentrations of ionic solutions on coal spontaneous combustion. Combustion Sci. Technol. 190 (10–12):1817–1831. doi:10.1080/00102202.2018.1473860.
  • Feng, J. 2018 37. Application of silicified coal technology in the sealing construction of high gas goaf in Jianxin coal mine. Shaanxi Coal. 174(2):89–91.
  • GB/T 212-2008, Proximate analysis of coal.2008. (In Chinese).
  • Guo, H. Y. 2010. Study on characteristics of silicified coal spontaneous combustion in Tashan mine. Taiyuan, China: Taiyuan University of technology. doi:10.7666/d.d082965.
  • Guo, J., H. Wen, Y. Liu, and Y. F. Jin. 2019. Data on analysis of temperature inversion during spontaneous combustion of coal. Data in Brief 25:104304. doi:10.1016/j.dib.2019.104304.
  • He, X. Q., X. F. Liu, B. S. Nie, and D. Z. Song. 2017. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 206 (oct.15):555–63. doi:10.1016/j.fuel.2017.05.101.
  • Ibarra, J., E. Muñoz, and R. Moliner. 1996. Ftir study of the evolution of coal structure during the coalification process. Org. Geochem. 24 (6–7):725–35. doi:10.1016/0146-6380(96)00063-0.
  • Jin, Y. F., J. Guo, H. Wen, W. Y. Liu, K. Wang, and X. F. Ma. 2015. Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion. J. China Coal Society 40 (3):596–602. doi:10.13225/j.cnki.jccs.2014.0626.
  • Li, C. S. 2017. Study on the influence of igneous rocks on coal seams in Datong coal measure strata. Huabei Land and Resources 2:58–59.
  • Li, H. L., Y. G. Zhang, Y. Qin, and S. P. He. 2013. Influence of mesozoic magmatic intrusion on coalbed gas occurrence in Qidong well field, Huaibei mining area. J. China Coal Society 38 (11):1982–87.
  • Li, W., and Y. M. Zhu. 2014a. Structural characteristics of coal vitrinite during pyrolysis. Energy Fuels 28 (6):36453654. doi:10.1021/ef500300r.
  • Li, W., Y. M. Zhu, Y. Song, and M. Wang. 2014b. Study of a vitrinite macromolecular structure evolution control mechanism of the energy barrier in hydrocarbon generation. Energy Fuels 28 (1):500509. doi:10.1021/ef4020108.
  • Liu, B. Z. 2012. Establishment of forecasting system for coal spontaneous combusition in Tongxin coal mine. Safety in Coal Mines 8:199–202.
  • Liu, C., L. B. Fu, J. Yang, and Z. Su. 2020a. A novel understanding of combustion behavior of coals by cone calorimeter. J Therm Anal Calorim 143 (4). doi: 10.1007/s10973-019-09250-0.
  • Liu, X. Q. 2019. Study on lamprophyre hosting features and its impact on coal seam and coal quality in majiliang coalmine, Datong coalfield. Coal Geology of China 31 (4):13–17.
  • Liu, Y., H. Wen, J. Guo, Y. F. Jin, G. M. Wei, and Z. W. Yang. 2020b. Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study. Fuel 271:117625. doi:10.1016/j.fuel.2020.117625.
  • Ma, H. T., X. X. Song, K. J. Li, J. G. Zhao, T. G. Zhang, and J. P. Liu. 2020a. Changes of petrographic characteristics and quality of contact-metamorphosed coals in the Datong coalfield. Coal Geology Exploration 48 (2):99–105. doi:10.3969/j.1001-1986.2020.02.016.
  • Ma, Y. L., F. Li, Z. Y. Wu, and W. J. Dou. 2020b. Test results of ash content on dry basis in coal by automatic industrialAnalyzer evaluation of uncertainty. Metrology Measurement Technique 47 (6):108–110 + 116. doi:10.15988/j.cnki.1004-6941.2020.6.034.
  • Mahidin, H Usui, S Ishikawa et al. 2002. The evaluation of spontaneous combustion characteristics and properties of raw and upgraded indonesian low rank coals. Coal Preparation 22 (2):81–91. doi:10.1080/07349340210958.
  • Majumder, A. K., R. Jain, P. Banerjee, J. P. Barnwal et al. 2008. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 87 (13–14):3077–3081. doi:10.1016/j.fuel.2008.04.008.
  • Pan, R. K., C. Li, D. Fu, Z. J. Xiao, and H. L. Jia. 2019. The Study on Oxidation Characteristics and Spontaneous Combustion Micro-Structure Change of Unloading Coal under Different Initial Stress. Combustion Sci. Technol. 1–13. doi:10.1080/00102202.2019.1608976.
  • Petersen, H. I., P. Rosenberg, and H. P. Nytoft. 2008. Oxygen groups in coals and alginate-rich kerogen revisited. Int. J. Coal Geology 74 (2):93–113. doi:10.1016/j.coal.2007.11.007.
  • Shen, Y. H. 2008. Influence of igneous rocks on coal seams and coal quality in Tashan coalfield, Datong coalfield. J. Shanxi Coal-Mining Administrators College 21 (3):122–23. doi:10.3969/j.1008-8881.2008.03.057.
  • Wang, S. M., Q. Sun, J. W. Qiao, and S. Q. Wang. 2020. Geological guarantee of coal green mining. J. China Coal Society 45 (1):8–15.
  • Wang, T. 2002. Intrusive features and its influence of lamprophyre on coal seams and coal quality in Tongxin mine field. Coal Geology Exploration 5:11–13. doi:10.3969/j.1001-1986.2002.05.004.
  • Wang, X. M. 2006. Analysis of lamprophyre insert into coal seam influence to seam deposit law. Coal Science and Technology 5:78–80. doi:10.3969/j.0253-2336.2006.05.024.
  • Wen, H., J. Guo, Y. F. Jin, Z. Zhang, T. Wang, and W. Y. Liu. 2016. Progress and trend of evaluation study on coal mine thermodynamic disasters in China. Safety in Coal Mines 47 (3):172–76. doi:10.13347/j.cnki.mkaq.2016.03.047.
  • Xia, W., and W. Zhang. 2017. Characterization of surface properties of Inner Mongolia coal using FTIR and XPS. Energy Sources Part A Recovery Utilization Environ. Effects 39 (11):1–5. doi:10.1080/15567036.2017.1315758.
  • Yan, H. 2020. Study on the low temperature oxidation characteristics of siliconized coal in Dongzhou kiln mine. Xi'an, China: Xi’an University of science and technology. doi:10.27397/d.cnki.gxaku.2020.000508.
  • Yan, J. C., Z. P. Lei, Z. K. Li, Z. C. Wang, S. B. Ren, S. G. Kang, X. L. Wang, and H. F. Shui. 2020. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 268:117038. doi:10.1016/j.fuel.2020.117038.
  • Yan, L., H. Wen, W. Y. Liu, Y. F. Jin, Y. Liu, and C. S. Li. 2022. Adiabatic spontaneous coal combustion period derived from the thermal effect of spontaneous combustion. Energy 239:122101. doi:10.1016/j.energy.2021.122101.
  • Yan, X. B. 2018. Study on the evolution of function groups in coal gangue during reaction process. Xi’an University of Science and Technology. (In Chinese)
  • Zhang, F. Q. 2007. Lamprophyre invasion’s effects on coal seam and its qualities in tashan coal-field of datong mining district. Shanxi C Oal 2:17–20. doi:10.3969/j.1672-5050.2007.02.006.
  • Zhang, G. D. 1993. Analysis of the influence of lamprophyre on Datong coalfield. Coal Geology of China 4:39–41.
  • Zhang, Y., W. G. Cao, G. N. Rao, L. Liu, H. D. Zhou, and Y. X. Tan. 2018. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts. Combustion Sci. Technol. 190 (10–12):1850–60. doi:10.1080/00102202.2018.1474877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.