179
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of a novel nano-thermite colloid based on CuO coated CNTs on the thermo-analytical characteristics of 1,3,5-trinitro-1,3,5-triazinane

ORCID Icon, & ORCID Icon
Pages 2523-2535 | Received 22 Oct 2021, Accepted 27 Dec 2021, Published online: 06 Jan 2022

References

  • Abd-elghany, M., A. Elbeih, and T. M. Klapötke. 2018. Thermo-analytical study of 2, 2, 2-trinitroethyl-formate as a new oxidizer and its propellant based on a GAP matrix in comparison with ammonium dinitramide. J Anal Appl Pyrolysis 133:30–38. doi:10.1016/j.jaap.2018.05.004.
  • Abd-elghany, M., T. M. Klapötke, and A. Elbeih. 2017a. Investigation of 2, 2, 2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose (thermal behavior and decomposition kinetics). J Anal Appl Pyrolysis 128:397–404. doi:10.1016/j.jaap.2017.09.010.
  • Abd-elghany, M., T. M. Klapötke, A. Elbeih, S. Hassanein, and T. Elshenawy. 2017b. Study of thermal reactivity and kinetics of HMX and its PBX by different methods. Chin J Expl. Propellant 2:24–32.
  • Abd‐elghany, M., T. M. Klapötke, and A. Elbeih. 2017. Thermal behavior and decomposition kinetics of Bis (2, 2, 2‐trinitroethyl)‐oxalate as a high energy dense oxidizer and its mixture with nitrocellulose. Propellants, Explos. Pyrotech 42:1373–81. doi:10.1002/prep.201700179.
  • Ang, L.-M., T. A. Hor, G.-Q. Xu, C.-H. Tung, S. Zhao, and J. L. Wang. 1999. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater 11:2115–18. doi:10.1021/cm990078i.
  • Arai, S., and M. Endo. 2003. Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. commun 5:797–99. doi:10.1016/j.elecom.2003.08.002.
  • Arai, S., M. Endo, and N. Kaneko. 2004b. Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42:641–44. doi:10.1016/j.carbon.2003.12.084.
  • Arai, S., M. Endo, S. Hashizume, and Y. Shimojima. 2004a. Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. comun 6:1029–31. doi:10.1016/j.elecom.2004.08.001.
  • Bak, S.-M., K.-H. Kim, C.-W. Lee, and K.-B. Kim. 2011. Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. J. Mater. Chem 21:1984–90. doi:10.1039/C0JM00922A.
  • Beckstead, M. W., K. Puduppakkam, P. Thakre, and V. Yang. 2007. Modeling of combustion and ignition of solid-propellant ingredients. Prog. In Ener. Comb. Sci 33:497–551. doi:10.1016/j.pecs.2007.02.003.
  • Cha, S. I., K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong. 2005. Extraordinary strengthening effect of carbon nanotubes in metal‐matrix nanocomposites processed by molecular‐level mixing. Advanc. Mat 17:1377–81. doi:10.1002/adma.200401933.
  • Chatterjee, S., U. Deb, S. Datta, C. Walther, and D. K. Gupta. 2017. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere 184:438–51. doi:10.1016/j.chemosphere.2017.06.008.
  • Chen, X., J. Xia, J. Peng, W. Li, and S. Xie. 2000. Carbon-nanotube metal-matrix composites prepared by electroless plating. Composit. Sci. And Tech 60:301–06. doi:10.1016/S0266-3538(99)00127-X.
  • Chin, K., A. Gohel, W. Chen, H. Elim, W. Ji, G. Chong, C. Sow, and A. Wee. 2005. Gold and silver coated carbon nanotubes: An improved broad-band optical limiter. Chem. Phys. Lett 409:85–88. doi:10.1016/j.cplett.2005.04.092.
  • Comet, M., C. Martin, F. Schnell, and D. Spitzer. 2019. Nanothermites: A short review. factsheet for experimenters, present and future challenges. Propellants, Explos. Pyrotech 44:18–36. doi:10.1002/prep.201800095.
  • Deluca, L. T. 2018. Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def. Tech 14:357–65. doi:10.1016/j.dt.2018.06.005.
  • Elbasuney, S., M. G. Zaky, M. Radwan, and S. F. Mostafa. 2017. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials. Appl. Surf. Sci 419:328–36. doi:10.1016/j.apsusc.2017.05.051.
  • Elbasuney, S., M. Yehia, M. G. Zaky, and M. Radwan. 2019. MWNTs coated with CuO particles: A novel nano‑catalyst for solid propellants. J Inorg Organomet Polym Mater 29:2064–71. doi:10.1007/s10904-019-01165-5.
  • Elbeih, A., A. K. Hussein, T. Elshenawy, S. Zeman, S. M. Hammad, A. Baraka, M. A. Elsayed, M. Gobara, and H. Tantawy. 2020. Enhancing the explosive characteristics of a Semtex explosive by involving admixtures of BCHMX and HMX. Def. Technol 16:487–92. doi:10.1016/j.dt.2019.05.012.
  • Elbeih, A., M. Abd‐elghany, and T. M. Klapötke. 2017. Kinetic parameters of PBX based on Cis‐1, 3, 4, 6‐tetranitroocta‐hydroimidazo‐[4, 5‐d] imidazole obtained by isoconversional methods using different thermal analysis techniques. Propellants, Explos. Pyrotech 42:468–76. doi:10.1002/prep.201700032.
  • Elbeih, A., and S. Zeman. 2014. Characteristics of melt cast compositions based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX)/TNT. Cent. Euro. J. Energ. Mat (11).
  • Elshenawy, T., A. Elbeih, and Q. M. Li. 2016. A modified penetration model for copper-tungsten shaped charge jets with non-uniform density distribution. Cent. Eur. J. Energetic Mater 13(4):927–943.
  • Elshenawy, T., S. Soliman, and A. Hawass. 2017. High density thermite mixture for shaped charge ordnance disposal. Def. Tech 13:376–79. doi:10.1016/j.dt.2017.03.005.
  • Fischer, S., and M. Grubelich A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. 32nd Joint Prop. Conf. and Exh., Lake Buena Vista, FL, USA 1996a. 3018.
  • Fischer, S., and M. Grubelich 1996b. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. 32nd Joint Prop. Conf. and Exh. American Institute of Aeronautics and Astronautics.
  • Hou, C., X. Geng, C. An, J. Wang, W. Xu, and X. Li. 2013. Preparation of Al nanoparticles and their influence on the thermal decomposition of RDX. Cent. Eur. J. Energetic Mater 10(1) :123–133.
  • Hussein, A. K., A. Elbeih, and S. Zeman. 2017. Thermal decomposition kinetics and explosive properties of a mixture based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole and 3-nitro-1, 2, 4-triazol-5-one (BCHMX/NTO). Thermochim. Acta 655:292–301. doi:10.1016/j.tca.2017.07.016.
  • Hussein, A. K., A. Elbeih, and S. Zeman. 2018a. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. RSC Adv. 8:17272–78. doi:10.1039/C8RA02994F.
  • Hussein, A. K., S. Zeman, and A. Elbeih. 2018b. Thermo-analytical study of glycidyl azide polymer and its effect on different cyclic nitramines. Thermochim. Acta 660:110–23. doi:10.1016/j.tca.2018.01.003.
  • Jagannatham, M., S. Sankaran, and H. Prathap. 2015. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci 324:475–81. doi:10.1016/j.apsusc.2014.10.150.
  • Jiang, Z., S.-F. Li, F.-Q. Zhao, P. Chen, C.-M. Yin, and S.-W. Li. 2002. Effect of nano metal powder on the thermal decomposition characteristics of HMX. Tuijin Jishu, J. Prop. Tech 23:258–61.
  • Joseph, M. D., S. K. Jangid, R. S. Satpute, B. G. Polke, T. Nath, S. N. Asthana, and A. S. Rao. 2009. Studies on advanced RDX/TATB based low vulnerable sheet explosives with HTPB binder. Propellants, Explos. Pyrotech 34:326–30. doi:10.1002/prep.200700220.
  • Klapötke, T. M. 2015. Chemistry of high-energy materials. Walter de Gruyter GmbH & Co KG. Berlin, Germany
  • Machado, M. A., D. A. Rodriguez, Y. Aly, M. Schoenitz, E. L. Dreizin, and E. Shafirovich. 2014. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Comb. Flam 161:2708–16. doi:10.1016/j.combustflame.2014.04.005.
  • Mahoney, C. M., A. J. Fahey, K. L. Steffens, J. R. Benner, B. A., and R. T. Lareau. 2010. Characterization of composition C4 explosives using time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Anal. Chem 82:7237–48. doi:10.1021/ac101116r.
  • Maqbool, A., M. A. Hussain, F. A. Khalid, N. Bakhsh, A. Hussain, and M. H. Kim. 2013. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact 86:39–48. doi:10.1016/j.matchar.2013.09.006.
  • Monk, I., M. Schoenitz, R. Jacob, E. Dreizin, and M. Zachariah. 2017. Combustion characteristics of stoichiometric Al-CuO nanocomposite thermites prepared by different methods. Comb. Sci. Tech 189:555–74. doi:10.1080/00102202.2016.1225731.
  • Nair, U., S. Asthana, A. S. Rao, and B. Gandhe. 2010. Advances in high energy materials. Def. Sci. J 60:137. doi:10.14429/dsj.60.327.
  • Peigney, A., C. Laurent, E. Flahaut, R. Bacsa, and A. Rousset. 2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–14. doi:10.1016/S0008-6223(00)00155-X.
  • Piercey, D. G., and T. M. Klapoetke. 2010. Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials. Cent. Eur. J. Energetic Mater 7:115–29.
  • Ren, H., Y. Y. Liu, Q. J. Jiao, X. F. Fu, and T. T. Yang. 2010. Preparation of nanocomposite PbO· CuO/CNTs via microemulsion process and its catalysis on thermal decomposition of RDX. Journal of Physics and Chemistry of Solids 71 (2):149–52. doi:10.1016/j.jpcs.2009.10.006.
  • Ritter, H., and S. Braun. 2001. High explosives containing ultrafine aluminum ALEX. Propellants, Explos. Pyrotech 26:311–14. doi:10.1002/1521-4087(200112)26:6<311::AID-PREP311>3.0.CO;2-S.
  • Rogers, R. N. 1975. Thermochemistry of explosives. Thermochim. Acta 11:131–39. doi:10.1016/0040-6031(75)80016-5.
  • Sahoo, P., and S. K. Das. 2011. Tribology of electroless nickel coatings–a review. Mat. Des 32:1760–75. doi:10.1016/j.matdes.2010.11.013.
  • Sahraei, A. A., H. N. Saeed, A. Fathi, M. Baniassadi, S. S. Afrookhteh, B. E. S. H. A. R. A. T. I. Givi, and M. K. 2017. Formation of homogenous copper film on MWCNTs by an efficient electroless deposition process. Sci, Eng. Comp. Mat 24:345–52. doi:10.1515/secm-2015-0081.
  • Trzciński, W. A., S. Cudziło, and L. Szymańczyk. 2007. Studies of detonation characteristics of aluminum enriched RDX compositions. Propellants, Explos. Pyrotech 32:392–400. doi:10.1002/prep.200700201.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Perez-maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520:1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, F., S. Arai, and M. Endo. 2005. The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon 43:1716–21. doi:10.1016/j.carbon.2005.02.015.
  • Yamagishi, K., S. Yae, N. Okamoto, N. Fukumuro, and H. Matsuda. 2003. Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating. Hyomen Gijutsu(J. Surf. Finish. Soc. Japan) 54:150–54. doi:10.4139/sfj.54.150.
  • Yan, Q.-L., F.-Q. Zhao, K. K. Kuo, X.-H. Zhang, S. Zeman, and L. T. Deluca. 2016b. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energ. And Comb. Sci 57:75–136.
  • Yan, Q.-L., M. Gozin, F.-Q. Zhao, A. Cohen, and S.-P. Pang. 2016a. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8:4799–851. doi:10.1039/C5NR07855E.
  • Yen, N. H., and L. Y. Wang. 2012. Reactive metals in explosives. Propellants, Explos. Pyrotech 37:143–55. doi:10.1002/prep.200900050.
  • Zaky, M. G. A. B. E. R., A. M. A., R. A. K. E. S. H. P. Sahu, I. S. H. W. A. R. K. Puri, Mostafa, and S. E. Radwan. 2019. Nanothermite colloids: A new prospective for enhanced performance. Def. Tech 15:319–25. doi:10.1016/j.dt.2018.08.016.
  • Zeman, S., and M. Jungová. 2016. Sensitivity and performance of energetic materials. Propellants, Explos. Pyrotech 41:426–51. doi:10.1002/prep.201500351.
  • Zhang, C., Q. Peng, L. Wang, and X. Wang. 2010. Thermal Sensitivity of HMX Crystals and HMX‐Based Explosives Treated under Various Conditions. Propellants, Explos. Pyrotech 35:561–66. doi:10.1002/prep.200800010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.