120
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study of the Effect of Drive Gas Type on the Inhibition of Coal Spontaneous Combustion by Ternary System Foam

, , , , , & show all
Pages 2556-2569 | Received 15 Nov 2021, Accepted 05 Jan 2022, Published online: 12 Jan 2022

References

  • Chen, P., F. Huang, and Y. Fu. 2016. Performance of water-based foams affected by chemical inhibitors to retard spontaneous combustion of coal. Int. J. Min. Sci. Technol. 26 (3):443–48. doi:10.1016/j.ijmst.2016.02.012.
  • Dou, G. L., and Z. W. Jiang. 2019. Sodium humate as an effective inhibitor of low-temperature coal oxidation. Thermochim. Acta. 673:53–59. doi:10.1016/j.tca.2019.01.006.
  • Dou, G. L., D. M. Wang, X. X. Zhong, B. Qin. 2014. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Proc. Technol. 120:123–27. doi:10.1016/j.fuproc.2013.12.016.
  • Han, W. B., G. Zhou, M. Y. Xing, et al. 2020. Experimental investigation on physicochemical characteristics of coal treated with synthetic sodium salicylate-imidazole ionic liquids. J. Mol. Liq. doi:10.1016/J.MOLLIQ.2020.114822.
  • Janković, B., N. Manić, D. Stojiljković, V. Jovanović, et al. 2020. The assessment of spontaneous ignition potential of coals using TGA-DTG technique. Combust. Flame. 211:32–43. doi:10.1016/j.combustflame.2019.09.020.
  • Li, P. R., Y. L. Yang, J. H. Li, G. Miao, K. Zheng, Y. Wang. 2021. Study on the oxidation thermal kinetics of the spontaneous combustion characteristics of water-immersed coal. Thermochim Acta 699:178914. doi:10.1016/J.TCA.2021.178914.
  • Li, Q. W., Y. Xiao, K. Q. Zhong, C.-M. Shu, H.-F. Lü, J. Deng, S. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Mo, Q., J. J. Liao, L. P. Chang, Y. Han, A. L. Chaffee, W. Bao. 2021. Study on combustion performance of hydrothermally dewatered lignite by thermal analysis technique. Fuel 285:119217. doi:10.1016/j.fuel.2020.119217.
  • Qin, B. T., Y. Lu, Y. Li, et al. 2014. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Adv. Powder Technol. 25(5):1527–33. doi:10.1016/j.apt.2014.04.010.
  • Schaber, P., J. Colson, S. Higgins, et al. 2004. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 424(1–2):131–42. doi:10.1016/j.tca.2004.05.018.
  • Si, L. L., J. P. Wei, Y. J. Xi, H. Wang, Z. Wen, B. Li, H. Zhang. 2021. The influence of long-time water intrusion on the mineral and pore structure of coal. Fuel 290:119848. doi:10.1016/j.fuel.2020.119848.
  • Su, H. T., N. Kang, B. B. Shi, H. Ji, Y. Li, J. Shi. 2021. Simultaneous thermal analysis on the dynamical oxygen-lean combustion behaviors of coal in a O2/N2/CO2 atmosphere. J. Energy Inst. 96:128–39. doi:10.1016/J.JOEI.2021.03.003.
  • Tang, Z., G. Xu, S. Yang, J. Deng, Q. Xu, P. Chang. 2021. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties. Powder Technol. 384(24):258–66. doi:10.1016/j.powtec.2021.02.024.
  • Tian, H., H. Jiao, J. M. Cai, J. Wang, Y. Yang, A. V. Bridgwater. 2020. Co-pyrolysis of Miscanthus Sacchariflorus and coals: A systematic study on the synergies in thermal decomposition, kinetics and vapour phase products. Fuel 262:116603. doi:10.1016/j.fuel.2019.116603.
  • Wang, C. P., Y. Xiao, Q. W. Li, J. Deng, K. Wang. 2018. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi. Int. J. Min. Sci. Technol. 28(3):469–75. doi:10.1016/j.ijmst.2018.04.007.
  • Wang, D., N. Dong, S. Hui, et al. 2019. Analysis of urea pyrolysis products in 132.5-190 °C. Energy Procedia 158:2170–75.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29 (6):487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wu, Z. Y., S. S. Hu, S. G. Jiang, X. He, H. Shao, K. Wang, D. Fan, W. Li. 2018. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. J. Loss Prev. Process Ind. 56:272–77. doi:10.1016/j.jlp.2018.09.012.
  • Xi, X., and Q. L. Shi. 2021. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal. Fuel 288:119354. doi:10.1016/j.fuel.2020.119354.
  • Xi, Z. L., D. Li, and Z. Y. Feng. 2017. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion. Fuel 206:334–41. doi:10.1016/j.fuel.2017.06.022.
  • Xue, D., X. M. Hu, W. M. Cheng, M. Wu, Z. Shao, Y. Li, Y. Zhao, K. Zhang. 2020. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel. Fuel 266:117036. doi:10.1016/j.fuel.2020.117036.
  • Yang, Y., Y. Tsai, Y. N. Zhang, C.-M. Shu, J. Deng. 2018. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al-CO3 layered double hydroxides. Proc. Saf. Environ. Prot. 113:401–12. doi:10.1016/j.psep.2017.11.011.
  • Zhang, L. L., Y. P. Bian, and D. L. Kuai. 2021. Preparation and flame retardant property of nano-aluminum hydroxide foam for preventing spontaneous coal combustion. Fuel. doi:10.1016/J.FUEL.2021.121494.
  • Zhang, Y. T., Y. B. Zhang, Y. Q. Li, et al. 2021. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents. Energy. doi:10.1016/J.ENERGY.2021.121299.
  • Zhao, L., G. H. Ni, L. L. Sun, et al. 2020. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal. Fuel 262:116513.
  • Zhong, X. X., B. T. Qin, G. L. Dou, C. Xia, F. Wang. 2018. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation. Fuel 217:680–88. doi:10.1016/j.fuel.2017.12.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.