197
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Characterizing Tradeoffs in Memory, Accuracy, and Speed for Chemistry Tabulation Techniques

ORCID Icon, &
Pages 2614-2633 | Received 18 Oct 2021, Accepted 01 Dec 2021, Published online: 26 Jan 2022

References

  • Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. 2016. TensorFlow: Large-scale machine learning on heterogeneous systems. https://arxiv.org/abs/1603.04467v2
  • Armstrong, E., and J. C. Sutherland. 2021. A technique for characterising feature size and quality of manifolds. Combust. Theor. Model. 25:646–68. doi:10.1080/13647830.2021.1931715.
  • Armstrong, E., M. A. Hansen, R. C. Knaus, J. C. Hewson, and J. C. Sutherland. 2019. Constructing and accessing tabulated chemistry for fire scenarios. Western States Section of the Combustion Institute Fall Technical Meeting, paper 918-0040 Albuquerque, New Mexico, U.S.A.
  • Blasco, J. A., N. Fueyo, C. Dopazo, and J. Ballester. 1998. Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combust. Flame. 113:38–52. doi:10.1016/S0010-2180(97)00211-3.
  • Blasco, J. A., N. Fueyo, J. C. Larroya, C. Dopazo, and Y.-J. Chen. 1999. A single-step time-integrator of a methane–air chemical system using artificial neural networks. Comput. Chem. Eng. 23 :1127–33. doi:10.1016/S0098-1354(99)00278-1.
  • Bode, M., N. Collier, F. Bisetti, and H. Pitsch. 2019. Adaptive chemistry lookup tables for combustion simulations using optimal B-spline interpolants. Combust. Theor. Model. 23:674–99. doi:10.1080/13647830.2019.1583379.
  • Chatzopoulos, A., and S. Rigopoulos. 2013. A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames. Proc. Combust. Inst. 34:1465–73. doi:10.1016/j.proci.2012.06.057.
  • Chen, J.-Y., J. Blasco, N. Fueyo, and C. Dopazo. 2000. An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks. Proc. Combust. Inst. 28:115–21. doi:10.1016/S0082-0784(00)80202-7.
  • Chollet, F. 2015. Keras. https://keras.io Accessed 27 May 2021.
  • Christo, F., A. Masri, and E. Nebot. 1996. Artificial neural network implementation of chemistry with pdf simulation of H2/CO2 flames. Combust. Flame. 106:406–27. doi:10.1016/0010-2180(95)00250-2.
  • Domino, S. P., J. Hewson, R. Knaus, and M. Hansen. 2021. Predicting large-scale pool fire dynamics using an unsteady flamelet- and large-eddy simulation-based model suite. Phys. Fluids. 33:085109. doi:10.1063/5.0060267.
  • Emami, M., and A. Eshghinejad Fard. 2012. Laminar flamelet modeling of a turbulent CH4/H2/N2 jet diffusion flame using artificial neural networks. Appl. Math. Model. 36:2082–93. doi:10.1016/j.apm.2011.08.012.
  • Franke, L. L., A. K. Chatzopoulos, and S. Rigopoulos. 2017. Tabulation of combustion chemistry via artificial neural networks (ANNs): Methodology and application to LES-PDF simulation of sydney flame L. Combust. Flame. 185:245–60. doi:10.1016/j.combustflame.2017.07.014.
  • Glorot, X., and Y. Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9 Sardinia, Italy, 249–56.
  • Hansen, M., E. Armstrong, J. Sutherland, J. McConnell, J. Hewson, and R. Knaus. 2020. Spitfire. https://github.com/sandialabs/Spitfire Accessed 27 May 2021.
  • Hermann, T. 2021. frugally-deep. https://github.com/Dobiasd/frugally-deep Accessed 27 May 2021.
  • Honzawa, T., R. Kai, K. Hori, M. Seino, T. Nishiie, and R. Kurose. 2021. Experimental and numerical study of water sprayed turbulent combustion: Proposal of a neural network modeling for five-dimensional flamelet approach. Energy AI 5:100076. doi:10.1016/j.egyai.2021.100076.
  • Ihme, M., A. L. Marsden, and H. Pitsch. 2008. Generation of optimal artificial neural networks using a pattern search algorithm: Application to approximation of chemical systems. Neural Comput. 20:573–601. doi:10.1162/neco.2007.08-06-316.
  • Ihme, M., C. Schmitt, and H. Pitsch. 2009. Optimal artificial neural networks and tabulation methods for chemistry representation in les of a bluff-body swirl-stabilized flame. Proc. Combust. Inst. 32:1527–35. doi:10.1016/j.proci.2008.06.100.
  • Kempf, A., F. Flemming, and J. Janicka. 2005. Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30:557–65. doi:10.1016/j.proci.2004.08.182.
  • Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization.https://arxiv.org/abs/1412.6980v1
  • Lee, K., N. A. Trask, R. G. Patel, M. A. Gulian, and E. C. Cyr. 2021. Partition of unity networks: deep hp-approximation. https://arxiv.org/abs/2101.11256v1
  • Luo, Z., C. Yoo, E. Richardson, J. Chen, C. Law, and T. Lu. 2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame. 159:265–74. doi:10.1016/j.combustflame.2011.05.023.
  • McConnell, J. T., T. Saad, and J. C. Sutherland. 2020. An explicit low-mach projection method for modeling flows with finite-rate chemistry. AIAA AVIATION 2020 FORUM, paper AIAA 2020-3035 Dallas, Texas, U.S.A.
  • Owoyele, O., P. Kundu, M. M. Ameen, T. Echekki, and S. Som. 2020. Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames. Int. J. Engine Res. 21:151–68. doi:10.1177/1468087419837770.
  • Owoyele, O., P. Kundu, and P. Pal. 2021. Efficient bifurcation and tabulation of multi-dimensional combustion manifolds using deep mixture of experts: An a priori study. Proc. Combust. Inst. 38:5889–96. doi:10.1016/j.proci.2020.09.006.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci 10:319–39. doi:10.1016/0360-1285(84)90114-X.
  • Peters, N. 2000. Turbulent combustion. Cambridge, U.K: Cambridge University Press.
  • Piegl, L., and W. Tiller. 1997. The NURBS book. Berlin, Germany: Springer-Verlag.
  • Sen, B. A., and S. Menon. 2009. Turbulent premixed flame modeling using artificial neural networks based chemical kinetics. Proc. Combust. Inst. 32:1605–11. doi:10.1016/j.proci.2008.05.077.
  • Sen, B. A., and S. Menon. 2010. Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame. 157:62–74. doi:10.1016/j.combustflame.2009.06.005.
  • Späth, H. 1995. One dimensional spline interpolation algorithms. Wellesley, Massachusetts, U.S.A: A K Peters, Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.