164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Visualization of Flame Propagation and Quenching of Methane/Air Mixture in a cubic enclosure with Perforated Plates: Experimental Study

, &
Pages 2676-2695 | Received 26 Dec 2020, Accepted 19 Jan 2022, Published online: 01 Feb 2022

References

  • Alkidas, A. C. 1999. Combustion-chamber crevices: The major source of engine-out hydrocarbon emissions under fully warmed conditions. Progress Energy Combust. Sci. 25 (3):253–73. doi:10.1016/S0360-1285(98)00026-4.
  • Bellenoue, M., T. Kageyama, S. A. Labuda, and J. Sotton. 2003. Direct measurement of laminar flame quenching distance in a closed vessel. Experiment. Thermal Fluid Sci. 27:323–31. doi:10.1016/S0894-1777(02)00304-7.
  • Bychkov, V., V. Y. Akkerman, G. Fru, A. Petchenko, and L. E. Eriksson. 2007. Flame acceleration in the early stages of burning in tubes. Combust. Flame 150:263–76. doi:10.1016/j.combustflame.2007.01.004.
  • Bychkov, V., A. Petchenko, and L. E. Eriksson. 2005. Theory and modeling of acceleration flames in tubes. Phys. Rev. E. 72. doi:10.1103/PhysRevE.72.046307.
  • Bychkov, V., D. Valiev, and L. E. Eriksson. 2008. Physical mechanism of ultrafast flame acceleration. Phys. Rev. Lett. 101:164501. doi:10.1103/PhysRevLett.101.164501.
  • Choi, J. H., W. J. Lee, S. K. Park, J. Kim, and B. Choi. 2019. Experimental study on the flame propagation behaviors of R245fa(C3H3F5)/CH4/O2/N2 mixtures in a constant volume combustion chamber. Experiment. Thermal Fluid Sci. 101:276–82. doi:10.1016/j.expthermflusci.2018.10.030.
  • Ciccarelli, G., and S. Dorofeev. 2008. Flame acceleration and transition to detonation in ducts. Progress Energy Combust. Sci. 34:499–550. doi:10.1016/j.pecs.2007.11.002.
  • Ciccarelli, G., C. T. Johansen, and M. Parravani. 2010. The role of shock–flame interactions on flame acceleration in an obstacle laden channel. Combust. Flame 157:2125–36. doi:10.1016/j.combustflame.2010.05.003.
  • Daniel, W. A. 1957. Flame quenching at the walls of an internal combustion engine. Sixth Symposium (International) on Combustion, The Combustion Institute, 886–94.
  • Dorofeev, S. B. 2011. Flame acceleration and explosion safety applications. Proc. Combust. Instit. 33, 2161–75.
  • Dulger, M., E. Sher, and F. Chemla. 1994. Simulation of spark created turbulent flame development through numerical stochastic realizations. Combust. Sci. Technol. 100:141–62. doi:10.1080/00102209408935450.
  • DuttaRoy, R., S. R. Chakravarthy, and A. K. Sen. 2018. Experimental investigation of flame propagation and stabilization in a mesocombustor with sudden expansion. Experiment. Thermal Fluid Sci. 90:299–309. doi:10.1016/j.expthermflusci.2017.09.008.
  • Gutkowski, A. N., and T. Parra-Santos. 2014. Quenching distance and quenching diameter ratio for flames propagating in propane/air mixtures. In Proceedings of the International Conference on Heat Transfer and Fluid Flow.
  • Hall, R., A. Masri, P. Yaroshchyk, and S. Ibrahim. 2009. Effects of position and frequency of obstacles on turbulent premixed propagating flames. Combust. Flame 156:439–46. doi:10.1016/j.combustflame.2008.08.002.
  • Jarosinski, J., and J. andPodfilipski. 2001. Properties of propane flames. Eighteenth Int. Colloquium Dyn. Explosions Reactive Syst. 90–94.
  • Jin, K., Q. Duan, K. M. Liew, Z. Peng, L. Gong, and J. Sun. 2017. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct. J. Hazard Mater. 327:116–26. doi:10.1016/j.jhazmat.2016.12.050.
  • Jin, K., Q. Wang, Q. Duan, and J. Sun. 2020. Effect of single-layer wire mesh on premixed methane/air flame dynamics in a closed pipe. Int. J. Hydrogen Energy 6:359–89.
  • Joo, H., K. Duncan, and G. Ciccarelli. 2006. Flame-quenching performance of ceramic foam. Combust. Sci. Technol. 178:1755–69. doi:10.1080/00102200600788692.
  • Kolahdooz, H., M. Nazari, M. H. Keyhani, R. Ebrahimi, and O. Askari. 2019. Effect of obstacle type on methane-air flame propagation in a closed duct: An experimental study. J. Energy Res. Technol. 141. doi:10.1115/1.4043790.
  • Lai, J., and N. Chakraborty. 2016. Effects of lewis number on head on quenching of turbulent premixed flames: A direct numerical simulation analysis. Flow Turbulen. Combust. 96:279–308. doi:10.1007/s10494-015-9629-x.
  • Lie, Q., X. Sun, A. S. Lu, Z. Zhang, X. Wang, S. Han, and C. Wang. 2018. Experimental study of flame propagation across a perforated plate. Int. J. Hydrogen Energy 1–10.
  • Lin, L., L. Wang, X. Lin, N. Xie, and H. Chen. 2021. Experimental investigation on the distribution uniformity and pressure drop of perforated plate distributors for the innovative spray-type packed bed thermal storage. Particuology.
  • Masri, A., A. AlHarbi, S. Meares, and S. Ibrahim. 2012. A comparative study of turbulent premixed flames propagating past repeated obstacles. Ind Eng Chem Res 51:7690–703. doi:10.1021/ie201928g.
  • Pelce, P. 1985. Effect of gravity on the propagation of flames in tubes. J. Phys. 46:10–503. doi:10.1051/jphys:01985004604050300.
  • Radulescu, M. I., and B. M. Maxwell. 2011. The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid Mech. 667:96–134. doi:10.1017/S0022112010004386.
  • Roy, G., S. Frolov, A. Borisov, and D. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Progress Energy Combust. Sci. 30 (6):545–672. doi:10.1016/j.pecs.2004.05.001.
  • Sher, E., J. B. Heywood, and J. Hacohen. 1999. Heat transfer to the electrodes a possible explanation of misfire in SI-engines. Combust. Sci. Technol. 83:323–25. doi:10.1080/00102209208951839.
  • Wan, Y., C. H. Wang, Q. Li, and X. Luo. 2020. Experimental study of premixed hydrogen-air flame quenching in a channel with the perforated plate. Fuel 263:116733. doi:10.1016/j.fuel.2019.116733.
  • Wang, L. Q., H. H. Ma, Z. W. Shen, and D. G. Chen. 2019. Effect of a single orifice plate on methane-air explosion in a constant volume vessel: Position and blockage ratio dependence. Experiment. Thermal Fluid Sci. 103:157–62. doi:10.1016/j.expthermflusci.2019.01.015.
  • Wei, H., D. Gao, L. Zhou, D. Feng, and R. Chen. 2017. Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate. Combust. Flame 178:277–85. doi:10.1016/j.combustflame.2017.01.011.
  • Wen, X., M. Xie, M. Yu, G. Li, and W. Ji. 2020. Porous media quenching behaviors of gas deflagration in the presence of obstacles. Experiment. Thermal Fluid Sci. 45:32664–75.
  • Zhou, H., Z. Liu, H. Fang, and C. Tao. 2020. Attenuation effects of perforated plates with heterogeneously distributed holes on combustion instability in a spray flame combustor. J. Mechan. Sci. Technol. 34 (11):4865–75. doi:10.1007/s12206-020-1042-2.
  • Zhou, L., L. Zhong, J. Zhao, D. Gao, and H. Wei. 2018. Flame propagation and combustion modes in end-gas region of confined space. Combust. Flame 190:216–23. doi:10.1016/j.combustflame.2017.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.