151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Local Equilibrium and Discretization Effects on the Prediction of Scalar Dissipation Rates in Large Eddy Simulation of Turbulent Non-Premixed Combustion

ORCID Icon &
Pages 2697-2715 | Received 04 Mar 2021, Accepted 04 Feb 2022, Published online: 22 Feb 2022

References

  • Barlow, R., and J. Frank. 1998. Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst 27 (1):1087–95. doi:10.1016/S0082-0784(98)80510-9.
  • Bilger, R. W. 1980. Turbulent flows with nonpremixed reactants. In Turbulent reacting flows Libby, P. A., and Williams, F. A., 65–113. Berlin, Heidelberg: Springer-Verlag.
  • Bilger, R. W. 2004. Some aspects of scalar dissipation. Flow Turbul. Combust 72 (2–4):93–114. doi:10.1023/B:APPL.0000044404.24369.f1.
  • Bowman, C., R. Hanson, D. Davidson, W. Gardiner, V. Lissianski, G. Smith, D. Golden, M. Frenklach, and M. Goldenberg 1997. GRI–Mech 2.11 http://combustion.berkeley.edu/gri_mech. 2022; http://combustion.berkeley.edu/gri_mech2022.
  • Desjardins, O., G. Blanquart, G. Balarac, and H. Pitsch. 2008. High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys 227 (15):7125–59. doi:10.1016/j.jcp.2008.03.027.
  • Garmory, A., and E. Mastorakos. 2011. Capturing localised extinction in Sandia Flame F with LES–CMC. Proc. Combust. Inst 33 (1):1673–80. doi:10.1016/j.proci.2010.06.065.
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3 (7):1760–65. doi:10.1063/1.857955.
  • Geyer, D., A. Kempf, A. Dreizler, and J. Janicka. 2005. Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1-D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst 30 (1):681–89. doi:10.1016/j.proci.2004.08.216.
  • Jain, A., and S. H. Kim. 2019. On the non-equilibrium models for subfilter scalar variance in large eddy simulation of turbulent mixing and combustion. Phys. Fluids 31 (2):025112. doi:10.1063/1.5066228.
  • Jiang, G.-S., and C.-W. Shu. 1996. Efficient implementation of weighted ENO schemes. J. Comput. Phys 126 (1):202–28. doi:10.1006/jcph.1996.0130.
  • Jiménez, C., F. Ducros, B. Cuenot, and B. Bédat. 2001. Subgrid scale variance and dissipation of a scalar field in large eddy simulations. Phys. Fluids 13 (6):1748–54. doi:10.1063/1.1366668.
  • Johnson, R., H. Wu, and M. Ihme. 2017. A general probabilistic approach for the quantitative assessment of LES combustion models. Combust. Flame 183:88–101. doi:10.1016/j.combustflame.2017.05.004.
  • Karpetis, A., and R. Barlow. 2002. Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc. Combust. Inst 29 (2):1929–36. doi:10.1016/S1540-7489(02)80234-6.
  • Karpetis, A. N., and R. S. Barlow. 2005. Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst 30 (1):665–72. doi:10.1016/j.proci.2004.08.222.
  • Kaul, C. M., V. Raman, G. Balarac, and H. Pitsch. 2009. Numerical errors in the computation of subfilter scalar variance in large eddy simulations. Phys. Fluids 21 (5):055102. doi:10.1063/1.3123531.
  • Kaul, C. M., V. Raman, E. Knudsen, E. S. Richardson, and J. H. Chen. 2013. Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Combust. Inst 34 (1):1289–97. doi:10.1016/j.proci.2012.06.079.
  • Kemenov, K. A., H. Wang, and S. B. Pope. 2012. Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame. Combust. Theor. Model 16 (4):611–38. doi:10.1080/13647830.2011.645881.
  • Kim, S. H., and H. Pitsch. 2005. Conditional filtering method for large-eddy simulation of turbulent nonpremixed combustion. Phys. Fluids 17 (10):105103. doi:10.1063/1.2084229.
  • Kim, S. H., and H. Pitsch. 2006. Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Phys. Fluids 18 (7):075103. doi:10.1063/1.2221352.
  • Klimenko, A. Y. 1995. Note on the conditional moment closure in turbulent shear flows. Phys. Fluids 7:446. doi:10.1063/1.868641.
  • Klimenko, A. Y., and R. W. Bilger. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci 25 (6):595–687. doi:10.1016/S0360-1285(99)00006-4.
  • Knudsen, E., E. Richardson, E. Doran, H. Pitsch, and J. Chen. 2012. Modeling scalar dissipation and scalar variance in large eddy simulation: Algebraic and transport equation closures. Phys. Fluids 24 (5):055103. doi:10.1063/1.4711369.
  • Kolla, H., J. Rogerson, N. Chakraborty, and N. Swaminathan. 2009. Scalar dissipation rate modeling and its validation. Combust. Sci. Technol 181 (3):518–35.
  • Kolmogorov, A. N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30:301–05.
  • Meneveau, C., T. S. Lund, and W. H. Cabot. 1996. A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech 319:353–85. doi:10.1017/S0022112096007379.
  • Navarro-Martinez, S., and A. Kronenburg. 2009. LES–CMC simulations of a lifted methane flame. Proc. Combust. Inst 32 (1):1509–16. doi:10.1016/j.proci.2008.06.178.
  • Navarro-Martinez, S., A. Kronenburg, and F. Di Mare. 2005. Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75 (1–4):245–74. doi:10.1007/s10494-005-8580-7.
  • O ‘Brien, E. E., and T.-L. Jiang. 1991. The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys.Fluids A 3 (12):3121–23. doi:10.1063/1.858127.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci 10 (3):319–39. doi:10.1016/0360-1285(84)90114-X.
  • Pierce, C. D., and P. Moin. 1998. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10 (12):3041–44. doi:10.1063/1.869832.
  • Pitsch, H. 2002. Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst 29 (2):1971–78. doi:10.1016/S1540-7489(02)80240-1.
  • Sitte, M., C. T. d’Auzay, A. Giusti, E. Mastorakos, and N. Chakraborty. 2021. A-priori validation of scalar dissipation rate models for turbulent non-premixed flames. Flow Turbul. Combust 107 201–218.
  • Ventosa-Molina, J., O. Lehmkuhl, C. D. Pérez-Segarra, and A. Oliva. 2017. Large eddy simulation of a turbulent diffusion flame: Some aspects of subgrid modelling consistency. Flow Turbul. Combust 99 (1):209–38. doi:10.1007/s10494-017-9813-2.
  • Wang, D., and C. Tong. 2002. Conditionally filtered scalar dissipation, scalar diffusion, and velocity in a turbulent jet. Phys. Fluids 14 (7):2170–85. doi:10.1063/1.1481744.
  • Warhaft, Z. 2000. Passive scalars in turbulent flows. Ann. Rev. Fluid Mech 32 (1):203–40. doi:10.1146/annurev.fluid.32.1.203.
  • Yoo, C. S., E. S. Richardson, R. Sankaran, and J. H. Chen. 2011. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst 33 (1):1619–27. doi:10.1016/j.proci.2010.06.147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.