300
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Quantitative measurement of formaldehyde formed in combustion processes using gas chromatography analytical approach

, , , &
Pages 2716-2731 | Received 06 Jul 2021, Accepted 04 Feb 2022, Published online: 21 Feb 2022

References

  • Argyle M and Bartholomew C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145–269. 10.3390/catal5010145
  • Brandani, V., and G. Di Giacomo. 1985. Effect of small amounts of methanol on the vapour-liquid equilibrium for the water-formaldehyde system. Fluid Phase Equilib 24 (3):307–33. doi:10.1016/0378-3812(85)85011-1.
  • Burkert, A., Paa, and W. Paa. 2016. Ignition delay times of single kerosene droplets based on formaldehyde LIF detection. Fuel 167:271–79. doi:10.1016/j.fuel.2015.11.051.
  • Cantera. 2020. https://cantera.org/
  • Chen, B., Z. Wang, J. Y. Wang, H. Wang, C. Togbé, P. E. Álvarez Alonso, M. Almalki, M. Mehl, W. J. Pitz, S. W. Wagnon, et al. 2019. Exploring gasoline oxidation chemistry in jet stirred reactors. Fuel 236:1282–92. doi:10.1016/j.fuel.2018.09.055.
  • Delcroix, P. 2013. Theoretical and experimental studies of the interactions of formaldehyde with water, Université de Lille 1, PhD Thesis.
  • Dias, V., C. Duynslaegher, F. Contino, J. Vandooren, and H. Jeanmart. 2012. Experimental and modeling study of formaldehyde combustion in flames. Combust. Flame 159:1814–20. doi:10.1016/j.combustflame.2012.01.006.
  • Fenard, Y., A. Gil, G. Vanhove, H. H. Carstensen, K. M. Van Geem, P. R. Westmoreland, O. Herbinet, and F. Battin-Leclerc. 2018. A model of tetrahydrofuran low-temperature oxidation based on theoretically calculated rate constants. Combust. Flame 191:252–69. doi:10.1016/j.combustflame.2018.01.006.
  • Feng, L., C. J. Musto, and K. S. Suslick. 2010. A simple and highly sensitive colorimetric detection method for gaseous formaldehyde. JACS 132 (12):4046–47. doi:10.1021/ja910366p.
  • Geng, P., H. Zhang, S. Yang, and C. Yao. 2015. Comparative study on measurements of formaldehyde emission of methanol/gasoline fueled SI engine. Fuel 148:9–15. doi:10.1016/j.fuel.2015.01.075.
  • Giarracca, L. 2018. Impact of lignocellulosic biofuels on NOx formation in premixed laminar flames. Université de Lille, PhD thesis.
  • Gong, C., W. Huang, J. Liu, F. Wei, J. Yu, X. Si, F. Liu, and Y. Li. 2018. Detection and analysis of formaldehyde and unburned methanol emissions from a direct-injection spark-ignition methanol engine. Fuel 221:188–95. doi:10.1016/j.fuel.2018.02.115.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth 2017. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0.
  • Hanoune, B., T. LeBris, L. Allou, C. Marchand, and S. Le Calve. 2006. Formaldehyde measurements in libraries: Comparison between infrared diode laser spectroscopy and a DNPH-derivatization method. Atmos. Env 40 (30):5768–75. doi:10.1016/j.atmosenv.2006.05.017.
  • Lamoureux, N., K. Marschallek-Watroba, P. Desgroux, J. F. Pauwels, M. D. Sylla, and L. Gasnot. 2017. Measurements and modelling of nitrogen species in CH4/O2/N2 flames doped with NO, NH3, or NH3+NO. Combust. Flame 176:48–59. doi:10.1016/j.combustflame.2016.10.019.
  • Lebrun, N., P. Dhamelincourt, C. Focsa, B. Chazallon, J. L. Destombes, and D. Prevost. 2003. Raman analysis of formaldehyde aqueous solutions as a function of concentration. J. Raman Spectrosc 34 (6):459–64. doi:10.1002/jrs.1025.
  • Luong, J., L. Sieben, M. Fairhurst, and J. De Zeeuw. 1996. Determination of low levels of formaldehyde and acetaldehyde by gas chromatography flame ionization detection with a nickel catalyst. J. High Res. Chrom 19 (10):591–94. doi:10.1002/jhrc.1240191013.
  • Nishikawa, H., and T. Sakai. 1995. Derivatization and chromatographic determination of aldehydes in gaseous and air samples. J. Chrom. A 710 (1):159–65. doi:10.1016/0021-9673(94)01006-Z.
  • NIST 2020. 08 mass spectral library, mass spectrometry data center, https://chemdata.nist.gov/
  • NIST Chemistry WebBook Available at http://webbook.nist.gov/chemistry/
  • Oancea, A. 2010. Étude de la solubilité et de l’incorporation du formaldéhyde dans l’eau et la glace, Université Lille 1, PhD Thesis.
  • Pelucchi, M., S. Namysl, E. Ranzi, A. Frassoldati, O. Herbinet, F. Battin-Leclerc, and T. Faravelli. 2019. An experimental and kinetic modelling study of n-C 4-C 6 aldehydes oxidation in a jet-stirred reactor. J. Proc. Combust. Inst 37 (1):389–97. doi:10.1016/j.proci.2018.07.087.
  • Riddick, J. A., W. B. Bunger, and T. K. Sakano. 1986. Organic Solvents: Physical Properties and Methods of Purification. 4th US Department of Energy, Office of Scientific and Technical Information ed. New York.
  • Rodriguez, A. 2016. Étude de la combustion de composés organiques grâce au couplage d’un réacteur parfaitement agité avec des méthodes analytiques spectroscopiques et spectrométriques: Application à la détection des hydroperoxydes. Université de Lorraine, PhD thesis.
  • Serinyel, Z., M. Lailliau, G. Dayma, and P. Dagaut. 2020. A high pressure oxidation study of di-n-propyl ether. Fuel 263:116554. doi:10.1016/j.fuel.2019.116554.
  • Strozzi, C., A. Claverie, V. Prevost, J. Sotton, and M. Bellenoue. 2019. HCCI and SICI combustion modes analysis with simultaneous PLIF imaging of formaldehyde and high-speed chemiluminescence in a rapid compression machine. Combust. Flame 202:58–77. doi:10.1016/j.combustflame.2019.01.002.
  • Tran, L.-S. 2013. Étude de la formation de polluants lors de la combustion de carburants oxygénés. Université de Lorraine, PhD thesis.
  • Tran, L. S., H. H. Carstensen, K. K. Foo, N. Lamoureux, S. Gosselin, L. Gasnot, A. El Bakali, and P. Desgroux. 2021. Experimental and modeling study of the high-temperature combustion chemistry of tetrahydrofurfuryl alcohol. J. Proc. Combust. Inst 38 (1):631–40. doi:10.1016/j.proci.2020.07.057.
  • Tran, L.-S., B. Sirjean, P.-A. Glaude, K. Kohse-Höinghaus, and F. Battin-Leclerc. 2015. Influence of substituted furans on the formation of polycyclic aromatic hydrocarbons in flames. Proc. Combust. Inst 35 (2):1735–43. doi:10.1016/j.proci.2014.06.137.
  • Tran, L. S., Z. Wang, H. H. Carstensen, C. Hemken, F. Battin-Leclerc, and K. Kohse-Höinghaus. 2017. Comparative experimental and modelling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combust. Flame 181:251–69. doi:10.1016/j.combustflame.2017.03.030.
  • Vlasenko, A., A. M. Macdonald, S. J. Sjostedt, and J. P. D. Abbatt. 2010. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): Correction for humidity effects. Atmos. Meas. Tech 3 (4):1055–62. doi:10.5194/amt-3-1055-2010.
  • Walker, J. F. 1964. Formaldehyde. 3rd ed. New York NY: Reinhold Publishing Company.
  • Wei, Y., M. Wang, H. Liu, Y. Niu, S. Wang, F. Zhanga, and H. Liu. 2019. Simultaneous determination of seven endogenous aldehydes in human blood by headspace gas chromatography–mass spectrometry. J. Chrom. B 1118–1119:85–92. doi:10.1016/j.jchromb.2019.04.027.
  • Whalan, J. E., J. Stanek, G. Woodall, P. Reinhart, A. Galizia, B. Glenn, A. Kraft, S. L. Makris, and A. M. Jarabek. 2019. The evaluation of inhalation studies for exposure quality: A case study with formaldehyde. Tox. Let 312:167–72. doi:10.1016/j.toxlet.2019.05.011.
  • Yoo, M. J., S. H. Jo, and K. H. Kim. 2019. An advanced technique for rapid and accurate monitoring of gaseous formaldehyde using large-volume injection interfaced with gas chromatograph/barrier discharge ionization detector (LVI/GC/Bid). Microc. J 147:806–12. doi:10.1016/j.microc.2019.03.096.
  • Zhu, H., J. She, M. Zhou, and X. Fan. 2019. Rapid and sensitive detection of formaldehyde using portable 2-dimensional gas chromatography equipped with photoionization detectors. Sens. Act. B. Chem 283:182–87. doi:10.1016/j.snb.2018.11.156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.