139
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of chemically active additives on kinetics of acetylene self-decomposition and following soot formation

, & ORCID Icon
Pages 2774-2800 | Received 01 Sep 2021, Accepted 08 Feb 2022, Published online: 17 Feb 2022

References

  • Agafonov, G. L., P. A. Vlasov, V. N. Smirnov, A. M. Tereza, A. A. Garmash, and V. V. Shumova. 2019. An experimental and simulation study of the effect of acetone and propane additives on soot formation in acetylene pyrolysis behind reflected shock waves. J. Phys. Conf. Ser. 1147:012044.
  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed Chemistry and Physics: Laminar Premixed flames of C2 hydrocarbons. Comb. Flame. 121:122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Bensabath, T., H. Monnier, and P.-A. Glaude. 2016. Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions. J. Anal. Appl. Pyrolysis. 122:342–54. doi:10.1016/j.jaap.2016.09.007.
  • Berthelot, M., and H. L. le Chatelier. 1899. Sur la vitesse de detonation de l’acetylene. C.R. Acad. Sci. 129:427–34.
  • Claude, G. M. A., and G. A. Hess, 1900. Apparatus for storing and distributing acetylene gas. USA patent N664383.
  • Colket, M. B. 1988. The pyrolysis of acetylene and vinylacetylene in a single-pulse shock tube. Proc. Combust. Inst. 21:851–54. doi:10.1016/S0082-0784(88)80317-5.
  • Colket, M. B., D. J. Seery, and H. B. Palmer. 1989. The pyrolysis of acetylene initiated by acetone. Comb. Flame. 75:343. doi:10.1016/0010-2180(89)90048-5.
  • CRECK modeling group. 2020, Version 2003. Accessed 12 January 2022 http://creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2013. Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy Fuels. 27 (12):7730–53. doi:10.1021/ef4016334.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015. OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comp. Phys. Commun. 192:237–64. doi:10.1016/j.cpc.2015.02.014.
  • Dagle, R., V. Dagle, M. Bearden, J. Holladay, T. Krause, and S. Ahmed. 2017. R&D opportunities for development of natural gas conversion technologies for co-production of hydrogen and value-added solid carbon products”. Technical Report. PNNL-26726, ANL-17/11.
  • Davydova, E. S., I. N. Atamanyuk, A. S. Ilyukhin, E. I. Shkolnikov, and A. Z. Zhuk. 2016. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries. J. Power Sources. 306:329–36. doi:10.1016/j.jpowsour.2015.11.112.
  • Dinh, D. K., D. H. Lee, Y.-H. Song, S. Jo, K.-T. Kim, M. Iqbal, and H. Kangb. 2019. Efficient methane-to-acetylene conversion using low-current arcs. RSC Adv. 9:32403–13. doi:10.1039/C9RA05964D.
  • Drakon, A., A. Eremin, E. Mikheyeva, B. Shu, M. Fikri, and C. Schulz. 2018. Soot formation in shock-wave-induced pyrolysis of acetylene and benzene with H2, O2, and CH4 addition. Comb. Flame. 198:158–68. doi:10.1016/j.combustflame.2018.09.014.
  • Duran, R. P., V. T. Amorebieta, and A. J. Colussi. 1989. Radical sensitization of acetylene pyrolysis. Int. J. Chem. Kinet. 21:947–58. doi:10.1002/kin.550211006.
  • Emelianov, A. V., A. V. Eremin, and V. E. Fortov. 2010. Formation of a detonation wave in the thermal decomposition of acetylene. JETP Lett 92:97–101. doi:10.1134/S0021364010140055.
  • Emelianov, A. V., A. V. Eremin, and V. E. Fortov. 2014. Detonation wave of condensation. In Physics of shock waves, combustion, explosion, detonation and nonequilibrium processes Levin, V.A., Fomin, N.A., and Fortov, V.E. Minsk: ITMO named after Lykov, National Academy of Sciences of Belarus. 109–125 ISBN-978-985-6456-91-9.
  • Emelianov, A., A. Eremin, V. Fortov, H. Jander, A. Makeich, and H. G. Wagner. 2009. Detonation wave driven by condensation of supersaturated carbon vapor. Phys. Rev. E. 79:035303. doi:10.1103/PhysRevE.79.035303.
  • Emelianov, A., A. Eremin, H. Jander, and H. G. Wagner. 2011. Carbon condensation wave in C3O2 and C2H2 initiated by a shock wave. Proc. Combust. Inst. 33 (1):525–32. doi:10.1016/j.proci.2010.05.103.
  • Emelianov, A. V., A. V. Eremin, A. A. Makeich, and V. E. Fortov. 2008. Formation of a detonation-like condensation wave. JETP Lett. 87 (9):470–73. doi:10.1134/S0021364008090038.
  • Emelianov, A. V., A. V. Eremin, E. Y. Mikheyeva, and V. E. Fortov. 2020. On the possibility of promoting a detonation condensation wave in acetylene with methane additions. Dokl. Phys. Chem. 490 (1):1–3. doi:10.1134/S0012501620010017.
  • Emelyanov, A. V., A. V. Eremin, and V. E. Fortov. 2021. Chemical condensation wave initiating oxygen-free combustion and detonation. Russ. J. Phys. Chem. B. 15:299–306. doi:10.1134/S1990793121020160.
  • Eremin, A. V. 2012. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Prog. Energy Combust. Sci. 38 (1):1–40. doi:10.1016/j.pecs.2011.09.002.
  • Eremin, A. 2019. Detonation wave of condensation in acetylene. In Advances in chemistry research, ed. J. C. Taylor, 163–98. New York: Nova science publishers.
  • Eremin, A., and E. Mikheyeva. 2019. The role of methyl radical in soot formation. Combust. Sci. Technol. 191 (12):2226–42. doi:10.1080/00102202.2018.1551892.
  • Eremin, A., E. Mikheyeva, and I. Selyakov. 2018. Influence of methane addition on soot formation in pyrolysis of acetylene. Comb. Flame. 193:83–91. doi:10.1016/j.combustflame.2018.03.007.
  • Golovastov, S. V., D. I. Baklanov, V. V. Golub, and V. V. Volodin. 2008. Inhibition of spontaneous decomposition of acetylene by hydrocarbon and hydrogen. Combust. Sci. Technol. 180 (10–11):1972–86. doi:10.1080/00102200802261951.
  • Golovastov, S. V., and G. Y. Bivol. 2016. Non-monotonous influence of admixtures of propane-butane mixture or hydrogen on induction periods of anoxic decomposition of acetylene. Combust. Sci. Technol. 188:1365–70. doi:10.1080/00102202.2016.1177032.
  • Golovastov, S., V. Golub, and A. Mikushkin. 2014. Stability of acetylene–propane–butane and acetylene–hydrogen gas mixtures subjected to shock wave action. Fuel. 126:213–18. doi:10.1016/j.fuel.2014.02.067.
  • Golub, V. V., E. V. Gurentsov, A. V. Emelianov, A. V. Eremin, and V. E. Fortov. 2015. Energy gain of the detonation pyrolysis of acetylene. High Temp. 53:363–69. doi:10.1134/S0018151X15030062.
  • Herring, D. H., and R. V. Peters. 2013. New-formula acetylene cool for heat treatment. Gear Technol. 9:90–95.
  • Holmen, A., O. A. Rokstad, and A. Solbakken. 1976. High-temperature pyrolysis of hydrocarbons. 1. Methane to acetylene. Ind. Eng. Chem. Process Des. Dev. 15:439–44. doi:10.1021/i260059a017.
  • Hwang, J. Y., W. Lee, H. G. Kang, and S. H. Chung. 1998. Synergistic effect of ethylene–propane mixture on soot formation in laminar diffusion flames. Comb. Flame. 114 (3–4):370–80. doi:10.1016/S0010-2180(97)00295-2.
  • Hyman, M. R., and D. J. Arp. 1987. Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms. Appl. Environ. Microbiol. 53:298–303. doi:10.1128/aem.53.2.298-303.1987.
  • Ivanov, B. A. 1969. Fizika vzryva atsetilena. Moscow: Khimiya.
  • Knorre, V. G., and A. G. Lyakhov. 1978. Detonation temperature of acetylene. Сombust. Explo. Shock Wave. 14 (2):263–64. doi:10.1007/BF00788394.
  • Knorre, V. G., D. Tanke, T. H. Thienel, and H. G. Wagner. 1996. Soot formation in the pyrolysis of benzene/acetylene and acetylene/hydrogen mixtures at high carbon concentrations. Proc. Combust. Inst. 26:2303–10. doi:10.1016/S0082-0784(96)80058-0.
  • Marinov, N. M., W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi, S. M. Senkan, and C. F. Melius. 1998. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Comb. Flame. 114 (1–2):192–213. doi:10.1016/S0010-2180(97)00275-7.
  • Mosse, A. L., A. V. Gorbunov, A. A. Galinovskii, V. V. Savchin, and A. V. Lozhechnik. 2008. Production of commercial hydrogen and acetylene from propane-butane and liquid hydrocarbons in an electric-arc plasma reactor. J. Eng. Phys. Them. 81:652–58. doi:10.1007/s10891-008-0083-7.
  • Naik, C., K. Puduppakkam, A. Modak, E. Meeks, Y. Wang, Q. Feng, and T. Tsotsis. 2011. Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Comb. Flame. 158:434–45. doi:10.1016/j.combustflame.2010.09.016.
  • Norinaga, K., and O. Deutschmann. 2007. Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Ind. Eng. Chem. Res. 46 (11):3547–57. doi:10.1021/ie061207p.
  • Norinaga, K., O. Deutschmann, N. Saegusa, and J. I. Hayashi. 2009. Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J. Anal. Appl. Pyrolysis. 86:148–60. doi:10.1016/j.jaap.2009.05.001.
  • Park, S., Y. Wang, S. H. Chung, and S. M. Sarathy. 2017. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Comb. Flame. 178:46–60. doi:10.1016/j.combustflame.2017.01.001.
  • Penny, E. 1956. The velocity of detonation of compressed acetylene. Disc. Faraday Soc. 22:157–61. doi:10.1039/df9562200157.
  • Saggese, C., N. E. Sánchez, A. Frassoldati, A. Cuoci, T. Faravelli, M. U. Alzueta, and E. Ranzi. 2014. Kinetic modeling study of polycyclic aromatic hydrocarbons and soot formation in acetylene pyrolysis. Energy Fuels. 28 (2):1489–501. doi:10.1021/ef402048q.
  • Shao, C., H. Wang, N. Atef, Z. Wang, B. Chen, M. Almalki, Y. Zhang, C. Cao, J. Yang, and S. M. Sarathy. 2019. Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-heptane/iso-octane/toluene). Proc. Combust. Inst. 37:993–1001. doi:10.1016/j.proci.2018.06.087.
  • Shtertser, A. A., V. Y. Ulianitsky, I. S. Batraev, and D. K. Rybin. 2018. Production of nanoscale detonation carbon using a pulse gas-detonation device. Tech. Phys. Lett. 44 (5):395–97. doi:10.1134/S1063785018050139.
  • Slavinskaya, N. A., U. Riedel, S. B. Dworkin, and M. J. Thomson. 2012. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Comb. Flame 159:979–95. doi:10.1016/j.combustflame.2011.10.005.
  • Tanzawa, T. W., and W. C. Gardiner. 1979. Thermal decomposition of acetylene. Proc. Comb. Inst. 17 (1):563–73. doi:10.1016/S0082-0784(79)80057-0.
  • Tao, H., H. Y. Wang, W. Ren, and K. C. Lin. 2019. Kinetic mechanism for modeling the temperature effect on PAH formation in pyrolysis of acetylene. Fuel. 255:115796. doi:10.1016/j.fuel.2019.115796.
  • Vlaskin, M. S., P. V. Belov, I. A. Lipatova, A. V. Grigorenko, E. I. Shkolnikov, A. I. Kurbatova, and V. E. Fortov. 2021a. Influence of CH4, H2, Ar and carbon admixtures and reactor shape on porous structure of soot forming in acetylene decomposition. High Temp. 60. (to be published).
  • Vlaskin, M. S., V. M. Zaichenko, P. V. Belov, A. V. Grigorenko, A. I. Kurbatova, A. V. Eremin, and V. E. Fortov. 2021b. Decomposition of acetylene into hydrogen and carbon: Experiments with internal combustion engines and experiments with a flow reactor. Theor. Found. Chem. Eng. 55 (2):315–24. doi:10.1134/S0040579521020135.
  • Wang, H., and M. Frenklach. 1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Comb. Flame. 110:173–221. doi:10.1016/S0010-2180(97)00068-0.
  • Wang, Y., A. Raj, and S. H. Chung. 2015. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Comb. Flame. 162 (3):586–96. doi:10.1016/j.combustflame.2014.08.016.
  • Wu, C. H., H. J. Singh, and R. D. Kern. 1987. Pyrolysis of acetylene behind reflected shock waves. Int. J. Chem. Kinet. 19:975–96. doi:10.1002/kin.550191104.
  • Xu, L., F. Yan, W. Dai, M. Zhou, S. H. Chung, and Y. Wang. 2020. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels. Comb. Flame. 216:24–28. doi:10.1016/j.combustflame.2020.02.013.
  • Yoon, S. S., S. M. Lee, and S. H. Chung. 2005. Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames. Proc. Comb. Inst. 30:1417–24. doi:10.1016/j.proci.2004.08.038.
  • Yoshizawa, Y., H. Kawada, and M. Kurokawa. 1979. A shock-tube study on the process of soot formation from acetylene pyrolysis. Proc. Comb. Inst. 17 (1):1375–13. doi:10.1016/S0082-0784(79)80129-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.