568
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Limits of sustaining a flame above smoldering woody biomass

, , &
Pages 2801-2819 | Received 24 Dec 2021, Accepted 08 Feb 2022, Published online: 25 Feb 2022

References

  • Anca-Couce, A., N. Zobel, A. Berger, and F. Behrendt. 2012. Smouldering of pine wood: Kinetics and reaction heats. Combust. Flame 159:1708–19. doi:10.1016/j.combustflame.2011.11.015.
  • Barnes, D. I. 2015. Understanding pulverised coal, biomass and waste combustion - A brief overview. Appl. Therm. Eng. 74:89–95. doi:10.1016/j.applthermaleng.2014.01.057.
  • Dmitrienko, M. A., J. C. Legros, and P. A. Strizhak. 2018. Experimental evaluation of main emissions during coal processing waste combustion. Environ. Pollut. 233:299–305. doi:10.1016/j.envpol.2017.10.090.
  • Drysdale, D., J. G. Quintiere, and D. Drysdale. 2011. An introduction to fire dynamics. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781119975465.
  • Dufour, A., A. Celzard, V. Fierro, E. Martin, F. Broust, and A. Zoulalian. 2008. Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Appl. Catal., A 346:164–73. doi:10.1016/j.apcata.2008.05.023.
  • Emberley, R., A. Inghelbrecht, Z. Yu, and J. L. Torero. 2017. Self-extinction of timber. Proc. Combust. Inst. 36:3055–62. doi:10.1016/j.proci.2016.07.077.
  • Fabris, I., D. Cormier, J. I. Gerhard, T. Bartczak, M. Kortschot, J. L. Torero, and Y.-L. Cheng. 2017. Continuous, self-sustaining smouldering destruction of simulated faeces. Fuel 190:58–66. doi:10.1016/j.fuel.2016.11.014.
  • Gao, J., X. Qi, D. Zhang, T. Matsuoka, and Y. Nakamura. 2021. Propagation of glowing combustion front in a packed bed of activated carbon particles and the role of CO oxidation. Proc. Combust. Inst. 38:5023–32. doi:10.1016/j.proci.2020.05.041.
  • Hu, Y., N. Fernandez-Anez, T. E. L. L. Smith, and G. Rein. 2018. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27:293–312. doi:10.1071/WF17084.
  • Huang, X., and J. Gao. 2021. A review of near-limit opposed fire spread. Fire Saf. J. 120:103141. doi:10.1016/j.firesaf.2020.103141.
  • Huang, X., and G. Rein. 2016. Interactions of Earth’s atmospheric oxygen and fuel moisture in smouldering wildfires. Sci. Total Environ. 572:1440–46. doi:10.1016/j.scitotenv.2016.02.201.
  • Huang, X., and G. Rein. 2017. Downward spread of smouldering peat fire: The role of moisture, density and oxygen supply. Int. J. Wildland Fire 26:907–18. doi:10.1071/WF16198.
  • Huang, X., and G. Rein. 2019. Upward-and-downward spread of smoldering peat fire. Proc. Combust. Inst. 37:4025–33. doi:10.1016/j.proci.2018.05.125.
  • Huang, X., F. Restuccia, M. Gramola, and G. Rein. 2016. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combust. Flame 168:393–402. doi:10.1016/j.combustflame.2016.01.017.
  • Iinuma, Y., E. Brüggemann, T. Gnauk, K. Müller, M. O. Andreae, G. Helas, R. Parmar, and H. Herrmann. 2007. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. Atmos. 112. doi:10.1029/2006JD007120.
  • Jones, R. E., H. F. Winters, and L. I. Maissel. 1968. Effect of oxygen on the rf-sputtering rate of SiO2. J. Vac. Sci. Technol. 5:84–87. doi:10.1116/1.1492586.
  • Kinsman, L., J. L. Torero, and J. I. Gerhard. 2017. Organic liquid mobility induced by smoldering remediation. J. Hazard. Mater. 325:101–12. doi:10.1016/j.jhazmat.2016.11.049.
  • Law, C. K. 2010. Combustion physics. Cambridge, England: Cambridge university press doi:10.1017/CBO9780511754517.
  • Lin, S., Y. K. Cheung, Y. Xiao, and X. Huang. 2020. Can rain suppress smoldering peat fire? Sci. Total Environ. 727:138468. doi:10.1016/j.scitotenv.2020.138468.
  • Lin, S., T. H. Chow, and X. Huang. 2021. Smoldering propagation and blow-off on consolidated fuel under external airflow. Combust. Flame 234:111685. doi:10.1016/j.combustflame.2021.111685.
  • Lin, S., and X. Huang. 2021. Quenching of smoldering: Effect of wall cooling on extinction. Proc. Combust. Inst. 38:5015–22. doi:10.1016/j.proci.2020.05.017.
  • Lin, S., X. Huang, J. Gao, and J. Ji. 2021. Extinction of wood fire: A near-limit blue flame above hot smoldering surface. Fire Technol. doi:10.1007/s10694-021-01146-6.
  • Lin, S., P. Sun, and X. Huang. 2019. Can peat soil support a flaming wildfire? Int. J. Wildland Fire 28:601–13. doi:10.1071/WF19018.
  • Martins, M. F., S. Salvador, J.-F. Thovert, and G. Debenest. 2010. Co-current combustion of oil shale–Part 1: Characterization of the solid and gaseous products. Fuel 89:144–51. doi:10.1016/j.fuel.2009.06.036.
  • Melody, S. M., and F. H. Johnston. 2015. Coal mine fires and human health: What do we know? Fuel Process. Technol. 152:1–14. doi:10.1016/j.coal.2015.11.001.
  • Michel, C., C. Liousse, J. Grégoire, K. Tansey, G. R. Carmichael, and J. Woo. 2005. Biomass burning emission inventory from burnt area data given by the SPOT‐VEGETATION system in the frame of TRACE‐P and ACE‐Asia campaigns. J. Geophys. Res. Atmos. 110. doi:10.1029/2004JD005461.
  • Ohlemiller, T. J. T. J. 1985. Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 11:277–310. doi:10.1016/0360-1285(85)90004-8.
  • Palmer, K. N. 1957. Smouldering combustion in dusts and fibrous materials. Combust. Flame 1:129–54. doi:10.1016/0010-2180(57)90041-X.
  • Pironi, P., C. Switzer, G. Rein, A. Fuentes, J. I. Gerhard, and J. L. Torero. 2009. Small-scale forward smouldering experiments for remediation of coal tar in inert media. Proc. Combust. Inst. 32:1957–64. doi:10.1016/j.proci.2008.06.184.
  • Quintiere, J. G. 2006. Fundamental of fire phenomena. New York: John Wiley. doi:10.1002/0470091150.
  • Rashwan, T. L., J. I. Gerhard, and G. P. Grant. 2016. Application of self-sustaining smouldering combustion for the destruction of wastewater biosolids. Waste Manage. 50:201–12. doi:10.1016/j.wasman.2016.01.037.
  • Rein, G. 2009. Smouldering combustion phenomena in science and technology. Int. Rev. Chem. Eng. 1:3–18. http://www.era.lib.ed.ac.uk/handle/1842/1152.
  • Rein, G. 2013. Smouldering fires and natural fuels. In Fire Phenomena and the Earth System, ed. C. M. Belcher, 15–34. New York: John Wiley & Sons, Ltd. doi:10.1002/9781118529539.ch2.
  • Rein, G. 2014. Smoldering Combustion. SFPE Handbook Fire Prot. Eng. 2014:581–603. doi:10.1007/978-1-4939-2565-0_19.
  • Rein, G., S. Cohen, and A. Simeoni. 2009. Carbon emissions from smouldering peat in shallow and strong fronts. Proc. Combust. Inst. 32:2489–96. doi:10.1016/j.proci.2008.07.008.
  • Rich, D., C. Lautenberger, J. L. Torero, J. G. Quintiere, and C. Fernandez-Pello. 2007. Mass flux of combustible solids at piloted ignition. Proc. Combust. Inst. 31 II:2653–60. doi:10.1016/j.proci.2006.08.055.
  • Santoso, M. A., E. G. Christensen, J. Yang, and G. Rein. 2019. Review of the transition from smouldering to flaming combustion in wildfires. Front. Mech. Eng. 5. doi:10.3389/fmech.2019.00049.
  • Shin, D., and S. Choi. 2000. The combustion of simulated waste particles in a fixed bed. Combust. Flame 121:167–80. doi:10.1016/S0010-2180(99)00124-8.
  • Song, Z., T. He, M. Li, D. Wu, and F. You. 2022. Self-sustaining smoldering as a novel disposal approach for food waste with high moisture content. Fuel Process. Technol. 228:107144. doi:10.1016/j.fuproc.2021.107144.
  • Tarelho, L. A. C., D. S. F. Neves, and M. A. A. Matos. 2011. Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor. Biomass Bioenergy 35:1511–23. doi:10.1016/j.biombioe.2010.12.052.
  • Tillman, D. A. 2000. Biomass cofiring: The technology, the experience, the combustion consequences. Biomass Bioenergy 19:365–84. doi:10.1016/S0961-9534(00)00049-0.
  • Tissari, J., J. Lyyränen, K. Hytönen, O. Sippula, U. Tapper, A. Frey, K. Saarnio, A. S. Pennanen, R. Hillamo, R. O. Salonen, et al. 2008. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ. 42:7862–73. doi:10.1016/j.atmosenv.2008.07.019.
  • Torero, J. L., J. I. Gerhard, M. F. Martins, M. A. B. Zanoni, T. L. Rashwan, and J. K. Brown. 2020. Processes defining smouldering combustion: Integrated review and synthesis. Prog. Energy Combust. Sci. 81:100869. doi:10.1016/j.pecs.2020.100869.
  • Van Der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6 (11):3423–41. doi:10.5194/acp-6-3423-2006.
  • Vantelon, J.-P., B. Lodeho, S. Pignoux, J. L. Ellzey, and J. L. Torero. 2005. Experimental observations on the thermal degradation of a porous bed of tires. Proc. Combust. Inst. 30:2239–46. doi:10.1016/j.proci.2004.08.109.
  • Wang, H., P. J. van Eyk, P. R. Medwell, C. H. Birzer, Z. F. Tian, and M. Possell. 2017. Effects of oxygen concentration on radiation-aided and self-sustained smoldering combustion of radiata pine. Energy Fuels 31:8619–30. doi:10.1021/acs.energyfuels.7b00646.
  • Wang, H., van Eyk PJ, P. R. Medwell, C. H. Birzer, Z. F. Tian, M. Possell, and X. Huang. 2021. Smouldering fire and emission characteristics of Eucalyptus litter fuel. Fire Mater. 1–11. doi:10.1002/fam.3004.
  • Wiedinmyer, C., B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang, S. O’Neill, and K. K. Wynne. 2006. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 40:3419–32. doi:10.1016/j.atmosenv.2006.02.010.
  • Yerman, L., D. Cormier, I. Fabris, J. Carrascal, J. L. Torero, J. I. Gerhard, and Y. L. Cheng. 2017. Potential bio-oil production from smouldering combustion of faeces. Waste Biomass Valorization 8:329–38. doi:10.1007/s12649-016-9586-1.
  • Yermán, L., R. M. Hadden, J. Carrascal, I. Fabris, D. Cormier, J. L. Torero, J. I. Gerhard, M. Krajcovic, P. Pironi, and Y.-L. Cheng. 2015. Smouldering combustion as a treatment technology for faeces : Exploring the parameter space. Fuel 147:108–16. doi:10.1016/j.fuel.2015.01.055.
  • Yermán, L., H. Wall, and J. L. Torero. 2017. Experimental investigation on the destruction rates of organic waste with high moisture content by means of self-sustained smoldering combustion. Proc. Combust. Inst. 36:4419–26. doi:10.1016/j.proci.2016.07.052.
  • Zanoni, M. A. B., J. L. Torero, and J. I. Gerhard. 2019. The role of local thermal non-equilibrium in modelling smouldering combustion of organic liquids. Proc. Combust. Inst. 37:3109–17. doi:10.1016/j.proci.2018.05.177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.