300
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Identification of zones with coal spontaneous combustion hazards in the three goafs surrounding an isolated Island working face: A case study on Qianyingzi Coal Mine

, ORCID Icon, , , &
Pages 2820-2842 | Received 28 Dec 2021, Accepted 08 Feb 2022, Published online: 27 Feb 2022

References

  • Brodny, J., and M. Tutak. 2016. Determination of the zone endangered by methane explosion in goaf with caving of longwalls ventilated on “Y. System. J. Manage. Eng 4 (24):247–51.
  • Cheng, J., S. Li, F. Zhang, C. Zhao, S. Yang, and A. Ghosh. 2016. CFD modelling of ventilation optimization for improving mine safety in longwall working faces. J. Loss Prevention Process Industries 40:285–97. doi:10.1016/j.jlp.2016.01.004.
  • Deng, J., C. Lei, Y. Xiao, K. Cao, L. Ma, W. Wang, and B. Laiwang. 2018. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 211:458–70. doi:10.1016/j.fuel.2017.09.027.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Fernández-Alaiz, F., A. M. Castañón, F. Gómez-Fernández, and M. Bascompta. 2020. Mine fire behavior under different ventilation conditions: Real-scale tests and CFD modeling. Applied Sciences 10 (10):3380. doi:10.3390/app10103380.
  • Guo, W., H. Wang, and S. Chen. 2016. Coal pillar safety and surface deformation characteristics of wide strip pillar mining in deep mine. Arabian J. Geosciences 9 (2). doi:10.1007/s12517-015-2233-5.
  • Guo, J., H. Wen, X. Zheng, Y. Liu, and X. Cheng. 2019. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process Safety Environ Protection 126:223–31. doi:10.1016/j.psep.2019.04.014.
  • Huang, Z., Z. Ma, S. Song, R. Yang, Y. Gao, and Y. Zhang. 2018. Study on the influence of periodic weighting on the spontaneous combustion “three-zone” in a gob. J. Loss Prevention Process Industries 55:480–91. doi:10.1016/j.jlp.2018.07.020.
  • Jiang, F. X., Y. Chen, D. Li, C. W. Wang, D. C. Ge, and S. T. Zhu. 2019. Study on mechanical mechanism of rock burst at isolated backfilling working face during primary mining. J. China Coal Soc 44 (1):151–59.
  • John, A., J. Brodny, and M. Tutak. 2018. The impact of airway geometry on the distribution of methane concen-trations at the outlet from a longwall. Mechanics 24 (5). doi:10.5755/j01.mech.24.5.21194.
  • Li, J., Z. Li, Y. Yang, and C. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Liang, Y., J. Zhang, L. Wang, H. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. J. Loss Prevention Process Industries 57:208–22. doi:10.1016/j.jlp.2018.12.003.
  • Liu, W., and Y. Qin. 2017. Multi-physics coupling model of coal spontaneous combustion in longwall gob area based on moving coordinates. Fuel 188:553–66. doi:10.1016/j.fuel.2016.10.049.
  • Liu, Y., H. Wen, J. Guo, Y. Jin, G. Wei, and Z. Yang. 2020. Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study. Fuel 271:117625. doi:10.1016/j.fuel.2020.117625.
  • Lu, Y., Y. Liu, S. Shi, G. G. X. Wang, H. Li, and T. Wang. 2020. Micro-particles stabilized aqueous foam for coal spontaneous combustion control and its flow characteristics. Process Safety Environ Protection 139:262–72. doi:10.1016/j.psep.2020.04.017.
  • Lu, Y., and B. T. Qin. 2014. Identification and control of spontaneous combustion of coal pillars: A case study in the Qianyingzi Mine, China. Nat. Hazards 75 (3):2683–97. doi:10.1007/s11069-014-1455-2.
  • Lu, Y., S. Shi, H. Wang, Z. Tian, Q. Ye, and H. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int J Heat Mass Transf 131:594–603. doi:10.1016/j.ijheatmasstransfer.2018.11.079.
  • Lv, W. L., S. Q. Yang, Q. Xu, T. Cheng, J. Huang, and L. He. 2010. Prevention and extinguishment technology of spontaneous combustion for isolated Island fully mechanized caving goaf in high-gas mine. J. Saf. Sci. Technol 6 (5):60–66.
  • Ma, L., R. Guo, M. Wu, W. Wang, L. Ren, and G. Wei. 2020. Determination on the hazard zone of spontaneous coal combustion in the adjacent gob of different mining stages. Process Safety Environ Protection 142:370–79. doi:10.1016/j.psep.2020.06.035.
  • Ren, W.-X., Q. Guo, and -H.-H. Yang. 2018. Analyses and prevention of coal spontaneous combustion risk in gobs of coal mine during withdrawal period. Geomatics, Natural Hazards and Risk 10 (1):353–67. doi:10.1080/19475705.2018.1523237.
  • Shi, G.-Q., P.-X. Ding, Z. Guo, and Y.-M. Wang. 2019. Modeling temperature distribution upon liquid-nitrogen injection into a self heating coal mine goaf. Process Safety Environ Protection 126:278–86. doi:10.1016/j.psep.2019.03.033.
  • Shi, G.-Q., M.-X. Liu, Y.-M. Wang, W.-Z. Wang, and D.-M. Wang. 2015. Computational fluid dynamics simulation of oxygen seepage in coal mine goaf with gas drainage. Mathematical Problems Eng 2015:1–9.
  • Song, Z., X. Huang, J. Jiang, and X. Pan. 2020. A laboratory approach to CO2 and CO emission factors from underground coal fires. Int. J. Coal Geology 219:103382. doi:10.1016/j.coal.2019.103382.
  • Song, Z. Y., H. Q. Zhu, J. Y. Xu, and X. F. Qin. 2015. Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies. Int. J. Mining Sci. Technol 25 (6):1037–44. doi:10.1016/j.ijmst.2015.09.024.
  • Tan, B., J. Shen, D. Zuo, and X. Guo. 2011. Numerical analysis of oxidation zone variation in goaf. Procedia Engineering 26:659–64. doi:10.1016/j.proeng.2011.11.2220.
  • Tu, M., Q. Bu, B. Fu, and Y. Wang. 2020. Mechanical Analysis of mining stress transfer on Isolated Island face in extra-thick fully mechanized top-coal caving mining. Geofluids 2020:1–16. doi:10.1155/2020/8834321.
  • Tutak, M., and J. Brodny. 2019. The impact of the strength of roof rocks on the extent of the zone with a high risk of spontaneous coal combustion for fully powered longwalls ventilated with the Y-Type system—A Case Study. Applied Sciences 9 (24):5315. doi:10.3390/app9245315.
  • Wang, Z. H., and Z. B. Cheng. 2016. Hard roof fracturing form and dynamic disaster control in short Island mining face. J. Rock Mech. Geotech. Eng 35 (S2):4018–28.
  • Wang, S., X. Li, and D. Wang. 2016a. Mining-induced void distribution and application in the hydro-thermal investigation and control of an underground coal fire: A case study. Process Safety Environ Protection 102:734–56. doi:10.1016/j.psep.2016.06.004.
  • Wang, S., X. Li, and D. Wang. 2016b. Void fraction distribution in overburden disturbed by longwall mining of coal. Environ Earth Sci 75:75–115. doi:10.1007/s12665-015-4958-6.
  • Wang, C., S. Yang, and X. Li. 2018. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Process Safety Environ Protection 118:296–306. doi:10.1016/j.psep.2018.06.028.
  • Xia, T., X. Wang, F. Zhou, J. Kang, J. Liu, and F. Gao. 2015. Evolution of coal self-heating processes in longwall gob areas. Int J Heat Mass Transf 86:861–68. doi:10.1016/j.ijheatmasstransfer.2015.03.072.
  • Xia, T., F. Zhou, J. Liu, J. Kang, and F. Gao. 2014. A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams. Fuel 125:106–15. doi:10.1016/j.fuel.2014.02.023.
  • Xia, T., F. Zhou, X. Wang, Y. Zhang, Y. Li, J. Kang, and J. Liu. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–96. doi:10.1016/j.fuel.2016.05.090.
  • Xie, Z., J. Cai, and Y. Zhang. 2012. Division of spontaneous combustion “Three-Zone” in goaf of fully mechanized coal face with big dip and hard roof. Procedia Engineering 43:82–87. doi:10.1016/j.proeng.2012.08.015.
  • Xie, J., and S. Xue. 2011. Study on division index and method of three spontaneous combustion zones in goaf of fully mechanized top coal caving mining face. Coal Sci. Technol 39 (1):65–68.
  • Xu, Y., Z. J. Li, X. W. Zhai, and Z. J. Yu. 2019. Potential coupled harzard zone of coal spontaneous combustion and gas in goaf under mining condition. J. China Coal Soc 44 (S2):585–92.
  • Yang, S. Q., Q. Xu, J. Huang, and T. X. Chu. 2009. The “Three Zones” microcirculation theory of goaf spontaneous combustion and a numerical simulation of the air leakage flow field. J. China Univ. Min. Technol 38 (6):769–773+788.
  • Yang, S., B. Zhou, and C. Wang. 2021. Investigation on coal spontaneous combustion in the gob of Y type ventialtion caving face: A case study. Process Safety Environ Protection 148:590–603. doi:10.1016/j.psep.2020.11.024.
  • Yuan, L., and A. C. Smith. 2009. CFD modeling of spontaneous heating in a large-scale coal chamber. J. Loss Prevention Process Industries 22 (4):426–33. doi:10.1016/j.jlp.2009.02.016.
  • Zhang, D., X. Cen, W. Wang, J. Deng, H. Wen, Y. Xiao, and C.-M. Shu. 2021a. The graded warning method of coal spontaneous combustion in Tangjiahui Mine. Fuel 288:119635. doi:10.1016/j.fuel.2020.119635.
  • Zhang, X., G. L. Dai, S. B. Nie, and L. Zhou. 2016. Air leakage measurement of narrow coal pillar in Island working face by energy level and SF6 tracer test. Min. Saf. Environ. Prot 43 (5):41–44.
  • Zhang, S., X. Wang, G. Fan, D. Zhang, and C. Jianbin. 2018. Pillar size optimization design of isolated Island panel gob-side entry driving in deep inclined coal seam—case study of Pingmei No. 6 coal seam. J. Geophys. Eng. 15 (3):816–28. doi:10.1088/1742-2140/aaa148.
  • Zhang, D., X. Yang, J. Deng, H. Wen, Y. Xiao, and H. Jia. 2021b. Research on coal spontaneous combustion period based on pure oxygen adiabatic oxidation experiment. Fuel 288:119651. doi:10.1016/j.fuel.2020.119651.
  • Zhang, W., D. S. Zhang, J. B. Chen, and M. T. Xu. 2014. Control of surrounding rock deformation for gob-side entry driving in narrow coal pillar of Island coalface. J. China Univ. Min. Technol 43 (1):36–42+55.
  • Zhu, H., Y. Huo, W. Wang, X. He, S. Fang, and Y. Zhang. 2021. Quantum chemical calculation of reaction characteristics of hydroxyl at different positions during coal spontaneous combustion. Process Safety Environ Protection 148:624–35. doi:10.1016/j.psep.2020.11.041.
  • Zhuo, H., B. Qin, Q. Qin, and Z. Su. 2019. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Safety Environ Protection 131:246–54. doi:10.1016/j.psep.2019.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.