141
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on Spontaneous Combustion Characteristics and Risk of Oil Shale

ORCID Icon, , , , &
Pages 2843-2859 | Received 24 May 2021, Accepted 10 Feb 2022, Published online: 22 Feb 2022

References

  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol. 45 (2):217–24.
  • Janković, B., N. Manić, D. Stojiljković, and V. Jovanović. 2018. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel 234:447–63.
  • Javier, G. T., R. G. Álvaro, F. A. Nieves, M. P. Ljiljana, and T. Alberto. 2016. Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel 184:503–11.
  • Kök, M. V., and M. R. Pamir. 2000. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyro. 55 (2):185–94.
  • Kök, M. V., G. Pokol, C. Keskin, J. Madarász, and S. Bagci. 2004. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J. Therm. Anal. Calorim. 76 (1):247–54.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44.
  • Ljiljana, M. P., F. A. Nieves, G. T. Javier, and R. G. Alvaro. 2015. Determination of spontaneous combustion of thermally dried sewage sludge. J. Loss Prevent Proc. 36:352–57.
  • Olarte, M. V., K. O. Albrecht, J. T. Bays, E. Polikarpova, B. Maddic, J. C. Linehana, M. J. O’Hagand, and D. J. Gaspara. 2019. Autoignition and select properties of low sample volume thermochemical mixtures from renewable sources. Fuel 238:493–506.
  • Ören, Ö., and C. Şensöğüt. 2016. Determination of safe storage types for coals with regard to their susceptibility to spontaneous combustion – Tuncbilek coal case. Int. J. Coal Prep. Util. 38:290-301.
  • Paul, F. H. 2002. Spontaneous combustion of shale spoils at a sanitary landfill. Waste Manage. 22 (6):687–88.
  • Qi, X., Q. Li, H. Zhang, and H. Xin. 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J. Energy Inst. 90 (4):544–55.
  • Restuccia, F., N. Ptak, and G. Rein. 2017. Self-heating behavior and ignition of shale rock. Combust. Flame 176:213–19.
  • Stoessel, F. 1993. What is your thermal risk. Chem. Eng. Prog. 89 (10):68–75.
  • Stoessel, F. Thermal safety of chemical processes: risk assessment and process design. 2008.
  • Sun, Y. H., F. T. Bai, X. S. Lü, C. X. Jia, Q. Wang, M. Y. Guo, Q. Li, and W. Guo. 2015. Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model. Energy 82:705–13.
  • Syed, S., R. Qudaih, I. Talab, and I. Janajreh. 2011. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel 90 (4):1631–37.
  • Tang, Y. B. 2016. A laboratorial study of spontaneous combustion characteristics of the oil shale in Fushun, China. Combust. Sci. Technol. 188 (6):997–1010.
  • Taraba, B., and Z. Pavelek. 2014. Investigation of the spontaneous combustion susceptibility of coal using the pulse flow calorimetric method: 25 years of experience. Fuel 125 (6):101–05.
  • Xiao, Y., S. J. Ren, J. Deng, and C. M. Shu. 2018. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 227:325–33.
  • Yağmur, S., and T. Durusoy. 2006. Kinetics of the pyrolysis and combustion of GÖYNÜK oil shale. J. Therm. Anal. Calorim. 86 (2):479–82.
  • Yildirim, S., C. Sensogut, and M. K. Gokay. 2006. Effects of electrical resistance on the spontaneous combustion tendency of coal and the interaction matrix concept. J. Univ. Sci. Technol. Beijing Mineral Metall. Mater. 13 (1):1–6.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. P. Yang, W. F. Wang, and Y. Q. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76.
  • Zhang, Y., J. Wu, L. Chang, J. Wang, S. Xue, and Z. Li. 2013. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). Int. J. Coal Geol. 120:41–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.