127
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Flame Propagation Characteristics in the Boundary Layer of the Bio-Water-Coal Fuel Particle During its Ignition

ORCID Icon, , ORCID Icon, &
Pages 2909-2932 | Received 12 Oct 2021, Accepted 25 Feb 2022, Published online: 09 Mar 2022

References

  • Agroskin, A. A., and V. B. Gleibman. 1980. Thermophysics of solid fuel [in Russian]. In (Nedra, Moscow), 256.
  • Ahn, K., Z. Chu, and D. Lee. 2021. Effects of renewable energy use in the energy mix on social welfare. Energy Economics 96:105174. doi:10.1016/J.ENECO.2021.105174.
  • Alekseenko, S. V. et al, . 2019. Analysis of Combustion of Coal-Water Fuel in Low-Power Hot-Water Boiler via Numerical Modeling and Experiments. J. Eng. Thermophys. 28 (2):177–89. doi:10.1134/S1810232819020024.
  • Bilgen, S. et al, . 2008. Global warming and renewable energy sources for sustainable development: A case study in Turkey. Renewable and Sustainable Energy Rev. 12 (2):372–96. doi:10.1016/J.RSER.2006.07.016.
  • Box, J. F. 2012. Gosset, Fisher, and the t Distribution The American Statistician . 35 (2):61–66. doi:10.1080/00031305.1981.10479309.
  • bp Statistical Review of World Energy 2020. Available at: www.bp.com/statisticalreview. (Accessed: 10 October 2021).
  • Burdukov, A. P. et al, . 2002. The rheodynamics and combustion of coal-water mixtures. Fuel 81 (7):927–33. doi:10.1016/S0016-23610100009-6.
  • Chetverushkin, B. N. 1985. Mathematical modeling of problems of radiating gas dynamics. In (The Science), 303.
  • Chonghe, H., G. Yan, G. Qinghua, H. Lei, and Y. Guangsuo. 2018. Investigations of CH* chemiluminescence and blackbody radiation in opposed impinging coal-water slurry flames based on an entrained-flow gasifier. Fuel 211:688–96. doi:10.1016/j.fuel.2017.09.094.
  • Chonghe, H., G. Yan, G. Qinghua, S. Xudong, and Y. Guangsuo. 2016. An experimental study on the spectroscopic characteristics in coal-water slurry diffusion flames based on hot-oxygen burner technology. Fuel Processing Technol. 154:168–77. doi:10.1016/j.fuproc.2016.08.029.
  • Chou, J.-S., Y.-C. Ou, and K.-Y. Lin. 2019. Collapse mechanism and risk management of wind turbine tower in strong wind. J. Wind Eng. Ind. Aerodyn. 193:103962. doi:10.1016/J.JWEIA.2019.103962.
  • Dalgaard, P. 2008. Statistics and Computing. Lëtzebuerg: Springer.
  • Ermakov, S. M., V. Z. Brodsky, and A. A. Zhiglyavsky. 1983. Mathematical theory of experiment planning. Moscow: FIZMATLIT.
  • Feng, J., Carey , W.K, . 2020. Evaluation of the onshore wind energy potential in mainland China—Based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 152:104484. doi:10.1016/J.RESCONREC.2019.104484.
  • Fernandez-Anez, N. et al, et al. 2018. Ignition sensitivity of solid fuel mixtures. Fuel 223:451–61. doi:10.1016/J.FUEL.2018.02.106.
  • Ferroni, F., A. Guekos, and R. J. Hopkirk. 2017. Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic Solar Systems in regions of moderate insolation. Energy Policy 107:498–505. doi:10.1016/J.ENPOL.2017.05.007.
  • Ferroni, F., and R. J. Hopkirk. 2016. Energy Return on Energy Invested (ERoEI) for photovoltaic Solar Systems in regions of moderate insolation. Energy Policy 94:336–44. doi:10.1016/J.ENPOL.2016.03.034.
  • Glushkov, D. O., P. A. Strizhak, and K. Y. Vershinina. 2016. Minimum temperatures for sustainable ignition of coal water slurry containing petrochemicals. Appl. Therm. Eng. 96:534–46. doi:10.1016/J.APPLTHERMALENG.2015.11.125.
  • Harary, F. 1977. Graph theory 1736–1936. Hist. Math. 4 (4):480–81. doi:10.1016/0315-08607790099-4.
  • International Renewable Energy Agency, I. (2019) ‘FUTURE OF WIND Deployment, investment, technology, grid integration and socio-economic aspects A Global Energy Transformation paper Citation About IRENA.’ Available at: www.irena.org/publications. (Accessed: 10 October 2021)
  • Karpenko, E. I., V. E. Messerle, and A. B. Ustimenko. 2007. Plasma-aided solid fuel combustion. Proc. Combust. Inst. 31 (2):3353–60. doi:10.1016/J.PROCI.2006.07.038.
  • Kijo-Kleczkowska, A. 2011. Combustion of coal-water suspensions. Fuel 90 (2):865–77. doi:10.1016/J.FUEL.2010.10.034.
  • Kuo, W., and C. Pan. 2018. A Reliability Look at Energy Development. Joule 2 (1):5–9. doi:10.1016/J.JOULE.2017.10.016.
  • Kuznetsov, G. V. et al, . 2020. Effect of concentration and relative position of wood and coal particles on the characteristics of the mixture ignition process. Fuel 274:117843. doi:10.1016/J.FUEL.2020.117843.
  • Kuznetsov, G. V. et al, . 2021. Mathematical modeling of the thermochemical processes of nitrogen oxides sequestration during combustion of wood-coal mixture particles. J. Energy Inst. 96:280–93. doi:10.1016/j.joei.2021.03.001.
  • Kyoto Protocol to the United Nations Framework Convention on Climate Change - Conventions and agreements - Declarations, conventions, agreements and other legal materials (no date). Available at: https://www.un.org/ru/documents/decl_conv/conventions/kyoto.shtml (Accessed: 10 October 2021).
  • Labriet, M. et al, . 2010. The implementation of the EU renewable directive in Spain. Strategies and challenges. Energy Policy 38 (5):2272–81. doi:10.1016/J.ENPOL.2009.12.015.
  • Letcher, T. M. 2020. Introduction to Renewable Energy, the Environment, and Social Issues. Reference Module in Earth Systems and Environ. Sci. doi:10.1016/B978-0-12-819727-1.00028-5.
  • Li, D., et al. 2020. Study on coal water slurries prepared from coal chemical wastewater and their industrial application. Appl. Energy 268:114976. doi:10.1016/J.APENERGY.2020.114976.
  • Li, H., et al. 2021. An indirect method for particle packing gradation evaluation of coal water slurry by wet preparation. Powder Technol. 381:189–203. doi:10.1016/J.POWTEC.2020.11.068.
  • Madsen, D. N., and J. P. Hansen. 2019. Outlook of solar energy in Europe based on economic growth characteristics Renewable and Sustainable Energy Reviews 114 . doi:10.1016/j.rser.2019.109306.
  • Mastalerz, M., A. Drobniak, and J. C. Hower. 2021. Changes in chemistry of vitrinite in coal through time: Insights from organic functional group characteristics. Int. J. Coal Geol. 235:103690. doi:10.1016/J.COAL.2021.103690.
  • Messerle, V. E., E. I. Karpenko, and A. B. Ustimenko. 2014. Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test. Fuel 126:294–300. doi:10.1016/J.FUEL.2014.02.047.
  • Miranda, M. L., and B. Hale. 2005. Paradise recovered: Energy production and waste management in Island environments. Energy Policy 33 (13):1691–702. doi:10.1016/J.ENPOL.2004.02.007.
  • Motsnyi, F. V. 2019. Analysis of Nonparametric and Parametric Criteria for Statistical Hypotheses Testing. Chapter II. Agreement Criteria of Romanovsky, Student and Fisher. Statistics of Ukraine 84 (1):13–23. doi:10.31767/SU.1(84)2019.01.02.
  • Munkres, J. R. 1984. Elements of algebraic topology (Boca Raton), 454.
  • Onifade, M. et al, . 2021. Development of multiple soft computing models for estimating organic and inorganic constituents in coal. Int. J. Min. Sci. Technol. 31 (3):483–94. doi:10.1016/J.IJMST.2021.02.003.
  • Petrović, V., and C. L. Bottasso (2014) ‘Wind turbine optimal control during storms’, Journal of Physics: Conference Series Atlanta, 524(1). doi: 10.1088/1742-6596/524/1/012052.
  • Pinchuk, V. A. et al, . 2020. Engineering equations for determining coal-water fuel combustion stages. J. Energy Inst. 93 (5):1924–33. doi:10.1016/J.JOEI.2020.04.007.
  • Pinchuk, V. A., T. A. Sharabura, and A. V. Kuzmin. 2017. Improvement of coal-water fuel combustion characteristics by using of electromagnetic treatment. Fuel Processing Technol. 167:61–68. doi:10.1016/j.fuproc.2017.06.014.
  • Pomerantsev, V. V., K. M. Arefiev, and D. B. Akhmedov. 1986. Foundations of the practical theory of combustion. Leningrade: Energoatomizdat.
  • Richter, I. A. 1984. Gas-air ducts of thermal power plants. Moscow: Science.
  • Rtimi, R., A. Sottolichio, and P. Tassi. 2021. Hydrodynamics of a hyper-tidal estuary influenced by the world’s second largest tidal power station (Rance estuary, France). Estuar Coast Shelf Sci 250:107143. doi:10.1016/J.ECSS.2020.107143.
  • Ryberg, D. S. et al, . 2019. The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy 182:1222–38. doi:10.1016/J.ENERGY.2019.06.052.
  • Saeed, M. A., M. Farooq, A. Anwar, M. M. Abbas, M. E. M. Soudagar, F. A. Siddiqui, M. A. Shakir, A.-S. Nizami, I. A. Chaudhry, A. Pettinau, et al. 2020. Flame propagation and burning characteristics of pulverized biomass for sustainable biofuel. Biomass Convers. Biorefin. 11 (2):409–17. doi:10.1007/S13399-020-00875-Y.
  • Salameh, M. G. 2003. Can renewable and unconventional energy sources bridge the global energy gap in the 21st century? Appl. Energy 75 (1–2):33–42. doi:10.1016/S0306-26190300016-3.
  • Salomatov, V. V. et al, . 2016. Ignition of coal-water fuel particles under the conditions of intense heat. Appl. Therm. Eng. 106:561–69. doi:10.1016/j.applthermaleng.2016.06.001.
  • Shadrin, E. Y. et al, . 2021. Coal-water slurry atomization in a new pneumatic nozzle and combustion in a low-power industrial burner. Fuel 303:121182. doi:10.1016/J.FUEL.2021.121182.
  • Sinanis, S. et al, . 2008. Characterization of sulphuric acid and ammonium sulphate aerosols in wet flue gas cleaning processes. Chem. Eng & Processing: Process Intensif. 47 (47):22–30. doi:10.1016/J.CEP.2007.07.011.
  • Sutcu, E. C. et al, . 2021. Mineral and rare earth element distribution in the Tunçbilek coal seam, Kütahya, Turkey. Int. J. Coal Geol. 245:103820. doi:10.1016/J.COAL.2021.103820.
  • S. V. Syrodoy et al, . 2016. Ignition of promising coal-water slurry containing petrochemicals: Analysis of key aspects. Fuel Processing Technol. 148:224–35. doi:10.1016/J.FUPROC.2016.03.008.
  • Syrodoy, S. V. et al, . 2018. The efficiency of heat transfer through the ash deposits on the heat exchange surfaces by burning coal and coal-water fuels. J. Energy Inst. 91 (6):1091–101. doi:10.1016/J.JOEI.2017.06.014.
  • Syrodoy, S. V. et al, . 2020a. Characteristics and conditions for ignition of bio-coal mixtures based on coal and forest combustible material. J. Energy Inst. 93 (5):1978–92. doi:10.1016/J.JOEI.2020.04.013.
  • Syrodoy, S. V., G. V. Kuznetsov, N. Y. Gutareva, and M. V. Purin. 2020b. Ignition of bio-water-coal fuel drops. Energy 203:117808. doi:10.1016/J.ENERGY.2020.117808.
  • Trainer, T. 2013. Can Europe run on renewable energy? A negative case. Energy Policy 63:845–50. doi:10.1016/J.ENPOL.2013.09.027.
  • Vilyunov, V. N. 1984. The theory of ignition of condensed substances. Novosibirsk: Science. Siberian Branch.
  • Wang, H. et al, . 2010. A new fluidization–suspension combustion technology for coal water slurry. Chem. Eng. and Processing: Process Intensif. 49 (10):1017–24. doi:10.1016/J.CEP.2010.07.009.
  • Yankovsky, S. A. et al, . 2021. Experimental study of the processes of reducing the formation of sulfur oxides during the co-combustion of particles of metalignitous coal and wood processing waste. Fuel 291:120233. doi:10.1016/J.FUEL.2021.120233.
  • Yilmaz, F. 2019. Energy, exergy and economic analyses of a novel hybrid ocean thermal energy conversion system for clean power production. Energy Convers. Manage. 196:557–66. doi:10.1016/J.ENCONMAN.2019.06.028.
  • Zhao, Y. et al, . 2020. Experimental study of the flame propagation characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel 262:116678. doi:10.1016/J.FUEL.2019.116678.
  • Zhou, C. et al, . 2012. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel 97:644–50. doi:10.1016/J.FUEL.2012.02.027.
  • Zhou, Z. et al, . 2021. Composition optimization of Al-Ni-Ti alloys based on glass-forming ability and preparation of amorphous coating with good wear resistance by plasma spray. Surf. Coat. Technol. 408:126800. doi:10.1016/J.SURFCOAT.2020.126800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.