352
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of hydrogen addition on flame stability and structure for low heating value coaxial nonpremixed flames

, &
Pages 2933-2951 | Received 10 Nov 2021, Accepted 27 Feb 2022, Published online: 08 Mar 2022

References

  • Abdallah, M. S., M. S. Mansour, and N. K. Allam. 2021. Mapping the stability of free-jet biogas flames under partially premixed combustion. Energy 220:119749. doi:10.1016/j.energy.2020.119749.
  • Ali, S. M., and S. Varunkumar. 2020a. Effect of burner diameter and diluents on the extinction strain rate of syngas-air non-premixed Tsuji-type flames. Int. J. Hydrogen Energy 45 (15):9113–27. doi:10.1016/j.ijhydene.2020.01.156.
  • Ali, S. M., and S. Varunkumar. 2020b. A three-step global kinetic mechanism for predicting extinction strain rate of syngas-air nonpremixed flames. Combust. Sci. Technol. 1–24. doi:10.1080/00102202.2020.1858288.
  • Alternative fuels data center. 2018. U.S. department of energy’s vehicle technologies office. Accessed February 13, 2018. https://www.afdc.energy.gov/fuels/natural_gas_benefits.html
  • Amini, H. R., and D. R. Reinhart. 2011. Regional prediction of long-term landfill gas to energy potential. Waste Management 31 (9–10):2020–26. doi:10.1016/j.wasman.2011.05.010.
  • ANSYS® Fluent. 2015. Release 16.2.
  • Benaissa, S., B. Adouane, S. M. Ali, and A. Mohammad. 2021. Effect of hydrogen addition on the combustion characteristics of premixed biogas/hydrogen-air mixtures. Int. J. Hydrogen Energy 46 (35):18661–77. doi:10.1016/j.ijhydene.2021.02.225.
  • Castrup, H. 2004. Estimating and combining uncertainties. In 8th Annual ITEA Instrumentation Workshop, Lancaster, CA, USA.
  • Chen, C. P., Y. C. Chao, T. S. Cheng, G. B. Chen, and C. Y. Wu. 2017. Structure and stabilization mechanism of a microjet methane diffusion flame near extinction. Proc. Combust. Ins. 31 (2):3301–08. doi:10.1016/j.proci.2006.08.069.
  • Cho, E. S., and S. H. Chung. 2009. Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion. J. Mech. Sci. Technol. 23 (3):650–58. doi:10.1007/s12206-008-1223-x.
  • Choi, S., S. Lee, and O. C. Kwon. 2015. Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy 85:503–10. doi:10.1016/j.energy.2015.03.061.
  • Cooper, S. P., C. R. Mulvihill, O. Mathieu, E. L. Petersen, M. W. Crofton, and K. Y. Lam. 2020. CH kinetics measurements and their importance for modeling prompt NOx formation in gas turbines. J. Eng. Gas Turbines Power 142 (4). doi: 10.1115/1.4044468.
  • Du, D. X., R. L. Axelbaum, and C. K. Law. 1995. Soot formation in strained diffusion flames with gaseous additives. Combust. Flame 102 (1):11–20. doi:10.1016/0010-2180(95)00043-6.
  • Giassi, D., S. Cao, B. A. V. Bennett, D. P. Stocker, F. Takahashi, M. D. Smooke, and M. B. Long. 2016. Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity. Combust. Flame 167:198–206. doi:10.1016/j.combustflame.2016.02.012.
  • Gollahalli, S. R., and G. K. Zadeh. 1985. Flame structure of attached and lifted jet flames of low-calorific-value gases. Energy Sources 8 (1):43–66. doi:10.1080/00908318508946040.
  • Ha, H.-R. 2017 Study on the laminar burning velocity and flammability limit of premixed flames for low calorific gases with hydrogen addition. Unpublished master’s thesis: Jeonbuk National University.
  • Harish, A., H. R. Rakesh Ranga, A. Babu, and V. Raghavan. 2018. Experimental study of flame characteristics and stability regimes of biogas – Air cross flow non-premixed flames. Fuel 223:334–43. doi:10.1016/j.fuel.2018.03.055.
  • He, L., Q. Guo, Y. Gong, F. Wang, and G. Yu. 2019. Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames. Combust. Flame 201:12–22. doi:10.1016/j.combustflame.2018.12.009.
  • Hwang, J., N. Bouvet, K. Sohn, and Y. Yoon. 2013. Stability characteristics of non-premixed turbulent jet flames of hydrogen and syngas blends with coaxial air. Int. J. Hydrogen Energy 38 (12):5139–49. doi:10.1016/j.ijhydene.2013.01.182.
  • Karbasi, M., and I. Wierzba. 1998. Prediction and validation of blowout limits of co-flowing jet diffusion flames - Effect of dilution. J Energy Resour Technol Asme 120 (2):167–71. doi:10.1115/1.2795029.
  • Kee, R. J., G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. 1986. The Chemkin transport database. Sandia Natl Lab Livermore, CA, USA, Rep. No SAND86-8246.
  • Kee, R. J., F. M. Rupley, and J. A. Miller. 1990. The chemkin thermodynamic data base (No. SAND-87-8215B). Livermore, CA (USA): Sandia National Labs. ISO 690.
  • Kumar, P., and D. P. Mishra. 2008. Experimental investigation of laminar LPG–H2 jet diffusion flame. Int. J. Hydrogen Energy 33 (1):225231. doi:10.1016/j.ijhydene.2007.09.023.
  • Lafay, Y., B. Renou, G. Cabot, and M. Boukhalfa. 2008. Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness. Combust. Flame 153 (4):540–61. doi:10.1016/j.combustflame.2007.10.002.
  • Leung, T., and I. Wierzba. 2008. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. Int. J. Hydrogen Energy 33 (14):3856–62. doi:10.1016/j.ijhydene.2008.04.030.
  • Li, X., S. Xie, J. Zhang, T. Li, and X. Wang. 2021. Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures. Energy 214:118981. doi:10.1016/j.energy.2020.118981.
  • Malushte, M., R. J. Varghese, R. Raj, and S. Kumar. 2021. Role of H2/CO Addition to Flame Instabilities and Their Control in a Stepped Microcombustor. Combust. Sci. Technol. 193 (15):2704–23. doi:10.1080/00102202.2020.1755971.
  • Maxwell, D., and Z. Zhu. 2011. Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ 33 (2):217–26. doi:10.1016/j.eneco.2010.06.012.
  • Ouchikh, S., M. S. Lounici, L. Tarabet, K. Loubar, and M. Tazerout. 2019. Effect of natural gas enrichment with hydrogen on combustion characteristics of a dual fuel diesel engine. Int. J. Hydrogen Energy 44 (26):13974–87. doi:10.1016/j.ijhydene.2019.03.179.
  • Roper, F. G. 1977a. The prediction of laminar jet diffusion flame sizes: Part I. Theor. Model. Combust. Flame 29:219–26. doi:10.1016/0010-2180(77)90112-2.
  • Roper, F. G., C. Smith, and A. C. Cunningham. 1977b. The prediction of laminar jet diffusion flame sizes: Part II. Exp. Verif. Combust. Flame 29:227–34. doi:10.1016/0010-2180(77)90113-4.
  • Sankaran, R., and H. G. Im. 2006. Effects of hydrogen addition on the Markstein length and flammability limit of stretched methane/air premixed flames. Combust. Sci. Technol. 178 (9):1585–611. doi:10.1080/00102200500536217.
  • Shin, C., Y. Oh, and S. Lee. 2018. Combustion characteristics of coaxial nonpremixed flames for low heating value gases. Energy 165:41–52. doi:10.1016/j.energy.2018.09.096.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, and Goldenberg, M. 2017. GRI 3.0 Mechanism. Des Plaines, IL: Gas Res Institute.
  • Takahashi, F., W. John Schmoll, and V. R. Katta. 1998. Attachment mechanisms of diffusion flames. Symposium (International) on Combustion 27 (1):675–84. doi:10.1016/S0082-0784(98)80460-8.
  • Takahashi, F., and W. J. Schmoll. 1991. Lifting criteria of jet diffusion flames. Symposium (International) on Combustion 23 (1):677–83. doi:10.1016/S0082-0784(06)80316-4.
  • Wang, Z., P. B. Sunderland, and R. L. Axelbaum. 2019. Dilution effects on laminar jet diffusion flame lengths. Proc. Combust. Ins. 37 (2):1547–53. doi:10.1016/j.proci.2018.06.085.
  • Wu, Y., Y. Lu, I. S. Al-Rahbi, and G. T. Kalghatgi. 2009. Prediction of the liftoff, blowout and blowoff stability limits of pure hydrogen and hydrogen/hydrocarbon mixture jet flames. Int. J. Hydrogen Energy 34 (14):5940–45. doi:10.1016/j.ijhydene.2009.01.084.
  • Xu, L., F. Yan, Y. Wang, S. H. Chung, C.-P. Chen, Y.-C. Chao, T. S. Cheng, G.-B. Chen, and C.-Y. Wu. 2020. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combust. Flame 213:14–25. doi:10.1016/j.combustflame.2019.11.011.
  • Yu, X., G. Li, Y. Du, Z. Guo, Z. Shang, F. He, Y. Li, D. Li, and Y. Li. 2019. A comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions of a gasoline/hydrogen SI engine. Int. J. Hydrogen Energy 44 (47):25974–84. doi:10.1016/j.ijhydene.2019.08.029.
  • Yu, Y., W. Lin, L. Li, and Z. Zhang. 2020. Effects of hydrogen addition on the combustion characteristics of diesel fuel jets under ultra-high injection pressures. Int. J. Hydrogen Energy 45 (17):10592–601. doi:10.1016/j.ijhydene.2019.08.242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.