147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Investigation of Axisymmetric Disk Stabilized Propane-Air Flames Operating under Inlet Mixture Preheat and Stratification

ORCID Icon, ORCID Icon, , &
Pages 3965-3993 | Received 20 Sep 2021, Accepted 11 Mar 2022, Published online: 16 Mar 2022

References

  • ANSYS® Academic Research, Release 2021R1, 2021.
  • Arndt, C. M., C. Dem, and W. Meier. 2021. Influence of Fuel Staging on Thermo-Acoustic Oscillations in a Premixed Stratified Dual-Swirl Gas Turbine Model Combustor. Flow, Turbul. Combust 106:613–29. doi:10.1007/s10494-020-00158-6.
  • Brauner, T., W. P. Jones, and A. J. Marquis. 2016. LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach. Flow, Turbul. Combust 96:965–85. doi:10.1007/s10494-016-9719-4.
  • Chen, Y., T. Yao, Q. Wang, and K. H. Luo. 2019. Large eddy simulation of impinging flames: Unsteady ignition and flame propagation. Fuel 255:115734. doi:10.1016/j.fuel.2019.115734.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12:1843–63. doi:10.1063/1.870436.
  • Daniels, G. E. 2002. Measurement of Gas Temperature and the Radiation Compensating Thermocouple. J. Appl. Meteorol Climatol 7(6): 1026–1035.
  • Dogkas, E., I. Lytras, P. Koutmos, and G. Kontogouris. 2020. Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion. Combust. Explos. Shock Waves 56:23–35. doi:10.1134/S0010508220010037.
  • Dunn-Rankin, D., and Y.-C. Chien, 2019. Cleaner Combustion. MDPI, 4052 Basel, Switzerland. doi:10.3390/books978-3-03921-478-5
  • Duwig, C., K.-J. Nogenmyr, C. Chan, and M. J. Dunn. 2011. Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theory Model 15:537–68. doi:10.1080/13647830.2010.548531.
  • Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, 2018., Reference Data Series. Vienna: International Atomic Energy Agency.
  • Ertesvåg, I. S., and B. F. Magnussen. 2000. The Eddy Dissipation Turbulence Energy Cascade Model. Combust. Sci. Technol 159:213–35. doi:10.1080/00102200008935784.
  • Filatyev, S. A., J. F. Driscoll, C. D. Carter, and J. M. Donbar. 2005. Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141:1–21. doi:10.1016/j.combustflame.2004.07.010.
  • Fiorina, B., R. Mercier, G. Kuenne, A. Ketelheun, A. Avdić, J. Janicka, D. Geyer, A. Dreizler, E. Alenius, C. Duwig, et al. 2015. Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame 162:4264–82. doi:10.1016/j.combustflame.2015.07.036.
  • Han, W., H. Wang, G. Kuenne, E. R. Hawkes, J. H. Chen, J. Janicka, and C. Hasse. 2018. Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. Proc. Combust. Inst. doi:10.1016/j.proci.2018.06.228.
  • Hodzic, E., E. Alenius, C. Duwig, R. S. Szasz, and L. Fuchs. 2017a. A large eddy simulation study of bluff body flame dynamics approaching blow-off. Combust. Sci. Technol 189:1107–37. doi:10.1080/00102202.2016.1275592.
  • Hodzic, E., M. Jangi, R.-Z. Szasz, and X.-S. Bai. 2017b. Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method. Combust. Flame 181:1–15. doi:10.1016/j.combustflame.2017.03.010.
  • Inanc, E., A. M. Kempf, and N. Chakraborty. 2021. Effect of sub-grid wrinkling factor modelling on the large eddy simulation of turbulent stratified combustion. Combust. Theory Model 25:911–39. doi:10.1080/13647830.2021.1962546.
  • Jaravel, T., E. Riber, B. Cuenot, and G. Bulat. 2017. Large Eddy Simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst 36:3817–25. doi:10.1016/j.proci.2016.07.027.
  • Kim, J., and S. B. Pope. 2014. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model 18:388–413. doi:10.1080/13647830.2014.919411.
  • Kuenne, G., F. Seffrin, F. Fuest, T. Stahler, A. Ketelheun, D. Geyer, J. Janicka, and A. Dreizler. 2012. Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 159:2669–89. doi:10.1016/j.combustflame.2012.02.010.
  • Law, C. K., D. L. Zhu, and G. Yu. 1988. Propagation and extinction of stretched premixed flames. Symp. Combust 21:1419–26. doi:10.1016/S0082-0784(88)80374-6.
  • Lee, C. Y., and S. Cant. 2017. LES of Nonlinear Saturation in Forced Turbulent Premixed Flames. Flow, Turbul. Combust 99:461–86. doi:10.1007/s10494-017-9811-4.
  • Lemaire, R., and S. Menanteau. 2017. Assessment of radiation correction methods for bare bead thermocouples in a combustion environment. Int. J. Therm. Sci 122:186–200. doi:10.1016/j.ijthermalsci.2017.08.014.
  • Li, Z., 2018. Sub-grid models for Large Eddy Simulation of non-conventional combustion regimes. Ph.D. Thesis. Darmstadt, Technische Universität.
  • Lu, T., and C. K. Law. 2009. Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy. Combust. Sci 35:192–215. doi:10.1016/j.pecs.2008.10.002.
  • Lytras, I., E. P. Mitsopoulos, E. Dogkas, and P. Koutmos. 2020. Algebraic Model for Chemiluminescence Emissions Suitable for Using in Complex Turbulent Propane Flame Simulations. Combust. Explos. Shock Waves 56:278–91. doi:10.1134/S0010508220030041.
  • Masri, A. R. 2015. Partial premixing and stratification in turbulent flames. Proc. Combust. Inst 35:1115–36. doi:10.1016/j.proci.2014.08.032.
  • Menon, S., and A. R. Kerstein. 2011. The Linear-Eddy Model In Turbulent Combustion Modeling: Advances, New Trends and Perspectives. ed. T. Echekki and E. Mastorakos, 221–47. Netherlands, Dordrecht: Springer. doi:10.1007/978-94-007-0412-1_10.
  • Mitsopoulos, E. P., I. Lytras, and P. Koutmos. 2019. Large eddy simulations of premixed CH4 bluff-body flames operating close to the lean limit using quasi-global chemistry and an algebraic chemiluminescence model. Theor. Comput. Fluid Dyn 33:325–40. doi:10.1007/s00162-019-00497-9.
  • Mitsopoulos, E. P. E. P., K. Souflas, and P. Koutmos. 2020. Effect of Inlet-Mixture Stratification and Preheating on a C3H8 Premixer and Bluff-Body Combustor. J. Energy. Eng 146:4020056. doi:10.1061/(ASCE)EY.1943-7897.0000702.
  • Mitsopoulos, E.-P., K. Souflas, and P. Koutmos. 2021. Effect of Inlet Mixture Stratification on Bluff-Body Stabilized, Turbulent, Prevaporized n-Heptane-Air Flames. J. Energy. Eng 147:4021037. doi:10.1061/(ASCE)EY.1943-7897.0000789.
  • Nakamura, H., and M. Shindo. 2019. Effects of radiation heat loss on laminar premixed ammonia/air flames. Proc. Combust. Inst 37:1741–48. doi:10.1016/j.proci.2018.06.138.
  • Nambully, S., P. Domingo, V. Moureau, and L. Vervisch. 2014. A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combust. Flame 161:1775–91. doi:10.1016/j.combustflame.2014.01.006.
  • Nori, V. N., and J. M. Seitzman. 2009. CH* chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst 32:895–903. doi:10.1016/J.PROCI.2008.05.050.
  • Park, O., P. S. Veloo, N. Liu, and F. N. Egolfopoulos. 2011. Combustion characteristics of alternative gaseous fuels. Proc. Combust. Inst 33:887–94. doi:10.1016/j.proci.2010.06.116.
  • Paterakis, G., E. Politi, and P. Koutmos. 2019. Experimental investigation of isothermal scalar mixing fields downstream of axisymmetric baffles under fully premixed or stratified inlet mixture conditions. Exp. Therm. Fluid Sci 108:1–15. doi:10.1016/j.expthermflusci.2019.05.018.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and Numerical Combustion. 2nd ed. Philadelphia, PA: R.T. Edwards Inc.
  • Qin, Z., V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, and H. Wang. 2000. Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. Proc. Combust. Inst 28:1663–69. doi:10.1016/S0082-0784(00)80565-2.
  • Souflas, K., 2019. Turbulent mixing and reacting flow characteristics of axisymmetric bluff-body stabilized propane-air flames, under inlet mixture stratification and preheat. Ph.D. Thesis. University of Patra.
  • Souflas, K., and P. Koutmos. 2022. Effects of Stratification and Preheat on Turbulent Flame Characteristics and Stabilization. Flow, Turbul. Combust 108:237–62. doi:10.1007/s10494-021-00267-w.
  • Souflas, K., K. Perrakis, and P. Koutmos. 2020. On the turbulent flow and pollutant emission characteristics of disk stabilized propane-air flames, under inlet mixture stratification and preheat. Fuel 260:116333. doi:10.1016/j.fuel.2019.116333.
  • Sweeney, M. S., S. Hochgreb, and R. S. Barlow. 2011. The structure of premixed and stratified low turbulence flames. Combust. Flame 158:935–48. doi:10.1016/j.combustflame.2011.02.007.
  • Vogel, M., M. Bachfischer, J. Kaufmann, and T. Sattelmayer. 2021. Experimental investigation of equivalence ratio fluctuations in a lean premixed kerosene combustor. Exp. Fluids 62:93. doi:10.1007/s00348-021-03197-5.
  • Wakatsuki, K., G. S. Jackson, J. Kim, A. Hamins, M. R. Nyden, and S. P. Fuss. 2008. Determination of Planck Mean Absorption Coefficients for Hydrocarbon Fuels. Combust. Sci. Technol 180:616–30. doi:10.1080/00102200701838941.
  • Wang, H., X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C. K. Law, 2007. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds [WWW Document]. USC Mech Version II. URL http://ignis.usc.edu/USC_Mech_II.htm
  • Wen, X., S. Hartl, A. Dreizler, J. Janicka, and C. Hasse. 2020. Flame structure analysis of turbulent premixed/stratified flames with H2 addition considering differential diffusion and stretch effects. Proc. Combust. Inst. doi:10.1016/j.proci.2020.06.267.
  • Wu, B., X. Zhao, B. R. Chowdhury, B. M. Cetegen, C. Xu, and T. Lu. 2019. A numerical investigation of the flame structure and blowoff characteristics of a bluff-body stabilized turbulent premixed flame. Combust. Flame 202:376–93. doi:10.1016/j.combustflame.2019.01.026.
  • Xiouris, C., and P. Koutmos. 2011. An experimental investigation of the interaction of swirl flow with partially premixed disk stabilized propane flames. Exp. Therm. Fluid Sci 35:1055–66. doi:10.1016/j.expthermflusci.2011.02.008.
  • Zettervall, N., K. Nordin-Bates, E. J. K. Nilsson, and C. Fureby. 2017. Large Eddy Simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combust. Flame 179:1–22. doi:10.1016/j.combustflame.2016.12.007.
  • Zhang, P., J.-W. Park, B. Wu, and X. Zhao. 2021. Large eddy simulation/thickened flame model simulations of a lean partially premixed gas turbine model combustor. Combust. Theory Model 25:1296–323. doi:10.1080/13647830.2021.1976421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.