465
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Study on Pore Structure Change Characteristics of Water-Immersed and Air-Dried Coal Based on SEM-BET

, , , , &
Pages 3994-4016 | Received 21 Nov 2021, Accepted 14 Mar 2022, Published online: 20 Mar 2022

References

  • Beamish, B. B., M. A. Barakat, and J. D. St. George. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol. 45 (2–3):217–24. doi:10.1016/S0166-5162(00)00034-3.
  • Cai, Y. D., D. M. Liu, Z. J. Pan, Y. B. Yao, J. Q. Li, and Y. K. Qiu. 2013. Pore structure and its impact on Ch4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 103:258–68. doi:10.1016/j.fuel.2012.06.055.
  • Chen, P., and X. Y. Tang. 2001. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal. J. China Coal Soc. 26 (5):552–56. doi:10.13225/j.cnki.
  • Choi, H., T. Chinnasamy, K. Sangdo, R. Youngjoon, L. Jeonghwan, and L. Sihyun. 2011. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process Technol. 92 (10):2005–10. doi:10.1016/j.fuproc.2011.05.025.
  • Deng, J., Y. Zhang, C. H. Li, Q. W. Li, L. J. Wu, and Y. J. He. 2016. Research of limit parameters and oxidation kinetics of water-logging coal self-ignition. Coal Technol. 35 (3):152–54. doi:10.13301/j.cnki.ct.2016.03.060.
  • Dong, X. M., L. W. Guo, Y. N. Shen, X. W. Dong, M. Sun, F. S. Wang, Z. X. Gao, and Z. M. Zhang. 2020. Study on pore structure distribution and characteristics of different coal. Coal Technol. 39 (9). doi: 10.13301/j.cnki.ct.2020.09.023.
  • Dong, X. W., F. S. Wang, and Y. N. Meng. 2014. Coal spontaneous combustion tendency affected by coal microscopic pore structure. Coal Sci. Technol. 24 (11):41–49.
  • Fei, Y., A. Abd Aziz, S. Nasir, W. R. Jackson, M. Marshall, J. Hulston, and A. L. Chaffee. 2009. The spontaneous combustion behavior of some low rank coals and a range of dried products. Fuel 88 (9):1650–55. doi:10.1016/j.fuel.2009.03.017.
  • Huang, Z. A., X. H. Zhao, Y. K. Gao, Z. L. Shao, Y. H. Zhang, and X. H. Liu. 2020. The influence of water immersion on the physical and chemical structure of coal. Combust. Sci. Technol. 1–19. doi:10.1080/00102202.2020.1804381.
  • Jayaraman, K., I. Gokalp, E. Bonifaci, and N. Merlo. 2015a. Kinetics of steam and CO2 gasification of high ash coal–char produced under various heating rates. Fuel 2015. doi:10.1016/j.fuel.2015.02.091.
  • Jiang, W. P., X. Z. Song, and L. W. Zhong. 2011. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method. J. China Coal Soc. 36 (4):610–14. doi:10.13225/j.cnki.jccs.2011.04.021.
  • Jun, L., Q. Huang, G. Wang, and E. Wang. 2022. Influence of active water on gas sorption and pore structure of coal. Fuel 310 (2022):122400. doi:10.1016/j.fuel.2021.122400.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138 (1):209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Lawal, A. I., M. Onifade, J. Abdulsalam, A. E. Aladejare, A. R. Gbadamosi, and K. Omar Said. 2020. On the performance assessment of ANN and spotted hyena optimized ANN to predict the spontaneous combustion liability of coal. Combust. Sci. Technol. 1–25. doi:10.1080/00102202.2020.1815196.
  • Li, F., S. An, and Z. Xing. 2019a. Experimental study on pore structure and spontaneous combustion characteristics of submerged coal. Coal Sci. Technol. 47 (S2):208–12.
  • Li, X. C., and Y. L. Kang. 2016. Effect of fracturing fluid immersion on methane adsorption/desorption of coal. J. Nat. Gas Sci. Eng. 34:449–57. doi:10.1016/j.jngse.2016.07.020.
  • Li, J. H., Z. H. Li, Y. L. Yang, J. H. Niu, and Q. X. Meng. 2019b. Insight into the chemical reaction process of coal self-heating after N2 drying. Fuel 255:115780. doi:10.1016/j.fuel.2019.115780.
  • Liang, X. Y., and D. M. Wang. 2003. Effects of moisture on spontaneous combustion of coal. J. Liaoning Tech. Univ. 22 (4):472–74.
  • Lu, Y., S. L. Shi, H. Q. Wang, Z. J. Tian, Q. Ye, and H. Y. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat Mass Transf. 131:594–603. doi:10.1016/j.ijheatmasstransfer.2018.11.079.
  • Machín, W. D. 1994. Temperature dependence of hysteresis and the pore size distributions of two mesoporous adsorbents. Langmuir. 1994 (10):1235–40. doi:10.1021/la00016a042.
  • Niu, H. Y., Y. K. Liu, Q. M. Nie, Y. Lu, S. L. Li, and X. M. Hu. 2020. Experimental study on characteristics of coal electrical parameters under water immersion and heating. China Saf. Sci. J. 30 (9):37–42.
  • Pan, J. N., K. Wang, Q. L. Hou, Q. H. Niu, H. C. Wang, and Z. M. Ji. 2016. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel 164:277–85. doi:10.1016/j.fuel.2015.10.011.
  • Qiao, L., C. B. Deng, X. Zhang, X. F. Wang, and F. W. Dai. 2018. Effect of soaking on coal oxidation activation energy and thermal effect. J. China Coal Soc. 43 (9):2519–24.
  • Ren, L. F., J. Deng, Q. W. Li, M. Li, Z. Li, L. W. Bin, and C. M. Shu. 2019a. Low-Temperature exothermic oxidation characteristics and spontaneous combustion risk of pulverised coal. Fuel 252:238–45. doi:10.1016/j.fuel.2019.04.108.
  • Ren, L. F., Q. Li, J. Deng, L. Ma, Y. Xiao, X. Zhai, and J. Hao. 2021. Effect of oxygen concentration on the oxidative thermodynamics and spontaneous combustion of pulverized coal. ACS Omega. 6 (40):26170–79. doi:10.1021/acsomega.1c03160.
  • Ren, L. F., Q. W. Li, J. Deng, X. Yang, L. Ma, and W. F. Wang. 2019b. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal. RSC Adv. 9 (70):41126–34. doi:10.1039/c9ra08875j.
  • Said, K. O., M. Onifade, B. Genc, A. Ismail Lawal, J. Abdulsalam, J. Muchiri Githiria, and S. Bada. 2021. On the dependence of predictive models on experimental dataset: A spontaneous combustion studies scenario. Int. J. Min. Reclam. Environ. 35 (7):506–22. doi:10.1080/17480930.2021.1884336.
  • Salmas, C. E., A. H. Tsetsekou, K. S. Hatzilyberis, and G. P. Androutsopoulos. 2001. Evolution lignite mesopore structure during drying. Effect of temperature and heating time. Drying Technol. 19 (1):35–64. doi:10.1081/drt-100001351.
  • Shi, W. T., J. M. Wang, X. Li, Q. S. Xu, and X. Y. Jiang. 2021. Multi-fractal characteristics of reconstructed landform and its relationship with soil erosion at a large opencast coal-mine in the loess area of China. Geomorphology 390:107859. doi:10.1016/j.geomorph.2021.107859.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines. Proc. Eng. 62:78–90. doi:10.1016/j.proeng.2013.08.046.
  • Song, S., B. T. Qin, H. H. Xin, X. W. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Tang, Y. B., and S. Xue. 2017. Influence of long-term water immersion on spontaneous combustion characteristics of bulianta bituminous coal. Gas Coal Technol. 14 (7):398–411. doi:10.1504/IJOGCT.2017.083065.
  • Thommes, M., K. Kaneko, A. V. Neimark, Olivier, J. P., Rodriguez-Reinoso, F., Rodriguez-Reinoso, J., Sing, K.S., et al. 2015. Physisorption of gases, with special referenceto the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87 (9–10):1051–1069. doi:10.1515/pac-2014-1117.
  • Wang, Z. Y., Y. P. Cheng, K. Z. Zhang, C. M. Hao, L. Wang, W. Li, and B. Hu. 2018b. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study. Fuel 232:495–505. doi:10.1016/j.fuel.2018.06.004.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29 (6):487–513. doi:10.1016/s0360-1285(03)00042-x.
  • Wang, Z. F., and X. Tang. 2018a. New insights from supercritical methane adsorption in coal: Gas resource estimation, thermodynamics, and engineering application. Energy Fuels. 32 (4):5001–09. doi:10.1021/acs.energyfuels.8b00477.
  • Wen, H., D. Wang, Y. H. Zhao, Q. H. Meng, and H. W. Zhang. 2015. Experimental study on coal spontaneous combustion characteristics of soaked. Coal Technol. 34 (1):261–63.
  • Wen, G. C., S. Yang, Y. B. Liu, W. B. Wu, D. L. Sun, and K. Wang. 2019. Influence of water soaking on swelling and microcharacteristics of coal. Energy Sci. Eng. 8 (1):50–60. doi:10.1002/ese3.508.
  • Xia, W. C., and Y. L. Wang. 2017. Role of prewetting/immersion time in the attachment time between air bubble and taixi oxidized coal. Int. J. Mineral Process. 163:9–13. doi:10.1016/j.minpro.2017.04.004.
  • Xiao, Y., Q. W. Li, and J. H. Lu. 2015. Effects of air relative humidity on coal spontaneous combustion properties. China Saf. Sci. J. 25 (3):34–40.
  • Xu, Y. L., Y. C. Bu, and L. Y. Wang. 2021. Re-ignition characteristics of the long-flame coal affected by high-temperature oxidization & water immersion. J. Clean. Prod. 315:128064. doi:10.1016/j.jclepro.2021.128064.
  • Xu, H., H. X. Qu, D. Z. Tang, and J. S. Yang. 2018. Study on pore characteristcs of lignite in hailar bas in based on low temperature nitrogen adsorption method. Chain Coal. 44 (10):52–59. doi:10.19880/j.cnki.ccm.2018.10.010.
  • Yu, J. L., A. Tahmasebi, Y. N. Han, F. K. Yin, and X. C. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol. 106:9–20. doi:10.1016/j.fuproc.2012.09.051.
  • Zelenka, T. 2016. Adsorption and desorption of nitrogen at 77 k on micro- and meso- porous materials: Study of transport kinetics. Microporous Mesoporous Mater. 227:202–09. doi:10.1016/j.micromeso.2016.03.009.
  • Zhai, X. W., H. Ge, T. Y. Wang, C. M. Shu, and J. Li. 2020. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205:118076. doi:10.1016/j.energy.2020.118076.
  • Zhai, X. W., H. Ge, K. Wang, S. B. Wu, and T. Y. Wang. 2018. Research on influences of water soaking-drying on coal spontaneous combustion characteristics and predictive index. China Saf. Sci. 28 (5):68–73.
  • Zhang, Y. H., L. Maxim, S. Mohammad, B. Ahmed, R. Taufiq, and I. Stefan. 2016. Swelling effect on coal micro structure and associated permeability reduction. Fuel 182:568–76. doi:10.1016/j.fuel.2016.06.026.
  • Zhao, S., X. Chen, X. Li, L. Qi, and G. Zhang. 2021. Experimental analysis of the effect of temperature on coal pore structure transformation. Fuel 305 (2021):121613. doi:10.1016/j.fuel.2021.121613.
  • Zhao, Y. C., J. Y. Zhang, C. L. Chou, Y. Li, Z. H. Wang, Y. T. Ge, and C. G. Zheng. 2008. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 73 (1):52–62. doi:10.1016/j.coal.2007.07.007.
  • Zhong, X. X., L. Kan, H. H. Xin, B. T. Qin, and G. L. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhu, Y. 2020. Experimental study on exothermic characteristics of low temperature oxidation process of coal with different water content. AnHui Univ. Sci. Technol. doi:10.26918/d.cnki.ghngc.2020.000136.
  • Zubrik, A., S. Hredzák, Ľ. Turčániová, M. Lovás, I. Bergmann, K. Dieter Becker, M. Lukčová, and V. Šepelák. 2010. Distribution of inorganic and organic substances in the hydrocyclone separated slovak sub-bituminous coal. Fuel 89 (8):2126–32. doi:10.1016/j.fuel.2010.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.