223
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of Cool Flames of Octane Isomers in the Counterflow Burner

, , & ORCID Icon
Pages 4017-4031 | Received 03 Dec 2021, Accepted 14 Mar 2022, Published online: 20 Mar 2022

References

  • Alfazazi, A., A. Al-Omier, A. Secco, H. Selim, Y. Ju, and S. M. Sarathy. 2018. Cool diffusion flames of butane isomers activated by ozone in the counterflow. Combust. Flame 191 (12):175–86. doi:10.1016/j.combustflame.2017.12.034.
  • Alfazazi, A., O. A. Kuti, N. Naser, S. H. Chung, and S. M. Sarathy. 2016a. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers. Fuel 185:589–98. doi:10.1016/j.fuel.2016.08.017.
  • Alfazazi, A., U. Niemann, H. M. Selim, R. J. Cattolica, and S. M. Sarathy. 2016b. Effects of substitution on counterflow ignition and extinction of C3 and C4 Alcohols. Energ. Fuel 30 (7):1–22. doi:10.1021/acs.energyfuels.6b00518.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 2002. A comprehensive modeling study of iso-octane oxidation. Combust. Flame 129 (3):253–80. doi:10.1016/S0010-2180(01)00373-X.
  • Davy, H. 1817. Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continued light in mixtures of inflammable gases and air without flame. Philos. Trans. R. Soc. London 107:77–85. doi:10.2307/107574.
  • Deng, S., P. Zhao, D. Zhu, and C. K. Law. 2014. NTC-affected ignition and low-temperature flames in nonpremixed DME/air counterflow. Combust. Flame 161 (8):1993–97. doi:10.1016/j.combustflame.2014.01.020.
  • Fan, Q., Y. Qi, and Z. Wang. 2020. Effect of octane number and thermodynamic conditions on combustion process of spark ignition to compression ignition through a rapid compression machine. Fuel 262 (2):116480. doi:10.1016/j.fuel.2019.116480.
  • Gray, B. F. 1969. Unified theory of explosions, cool flames and two stage ignitions. Part 3. Trans. Faraday Soc 65:2133–37. doi:10.1039/tf9696502133.
  • Gray, P. H. K., J. F. Griffiths, S. M. Hasko, and P. G. Lignola. 1981. Oscillatory ignitions and cool flames accompanying the non-isothermal oxidation of acetaldehyde in a well stirred, flow reactor. P. Roy. Soc. A-Math. Phy 374:313–39. doi:10.2307/2990345.
  • Griffiths, J. F., B. F. Gray, and P. H. K. Gray. 1971. Multistage ignition in hydrocarbon combustion: Temperature effects and theories of nonisothermal combustion. Symp. Int. Combust 13 (1):239–48. doi:10.1016/S0082-0784(71)80027-9.
  • Griffiths, J. F., and T. Inomata. 1992. Oscillatory cool flames in the combustion of diethyl ether. J. Chem. Soc., Faraday Trans 88 (21):3153–58. doi:10.1039/ft9928803153.
  • Griffiths, J. F., and S. K. Scott. 1987. Thermokinetic interactions fundamentals of spontaneous ignition and cool flames. Prog. Energ. Combust 13 (3):161–97. doi:10.1016/0360-1285(87)90010-4.
  • Johnson, M. V., and S. S. Goldsborough. 2009. A shock tube study of n- and iso-propanol ignition. Energ. Fuel 23 (12):5886–98. doi:10.1021/ef900726j.
  • Ju, Y. 2017. On the propagation limits and speeds of premixed cool flames at elevated pressures. Combust. Flame 178 (Complete):61–69. doi:10.1016/j.combustflame.2017.01.006.
  • Lignola, P. G., A. Marzocchella, and R. Mercogliano. 1989. JSFR combustion processes of n-heptane and iso octane. Symp. Int. Combust 22 (1):1625–33. doi:10.1016/S0082-0784(89)80174-2.
  • Lin, E., C. B. Reuter, and Y. Ju. 2019. Dynamics and burning limits of near-limit hot, warm, and cool diffusion flames of dimethyl ether at elevated pressure. P. Combust. Inst 37 (5):1791–98. doi:10.1016/j.proci.2018.05.082.
  • Liu, N., S. M. Sarathy, C. K. Westbrook, and F. N. Egolfopoulos. 2013. Ignition of non-premixed counterflow flames of octane and decane isomers. P. Combust. Inst 34 (5):903–10. doi:10.1016/j.proci.2012.05.040.
  • Lu, T., and C. K. Law. 2006. Linear-time reduction of large kinetic mechanisms with directed relation graph n-heptane and iso-octane. Combust. Flame 144 (1/2):24–36. doi:10.1016/j.combustflame.2005.02.015.
  • Lu, Z., Y. Yang, and M. J. Brear. 2019. Impact of ethanol on oxidation of iso-octane at low and intermediate temperatures. Combust. Flame 214 (40):167–83. doi:10.1016/j.combustflame.2019.12.040.
  • Luong, M. B., Z. Luo, T. Lu, S. H. Chung, and C. S. Yoo. 2013. Direct numerical simulations of the ignition of lean primary reference fuel air mixtures with temperature inhomogeneities. Combust. Flame 160 (10):2038–47. doi:10.1016/j.combustflame.2013.04.012.
  • Mansfield, A. B., M. S. Wooldrigde, and H. Di. 2015. Low-temperature ignition behavior of iso-octane. Fuel 139 (Jan.1):79–86. doi:10.1016/j.fuel.2014.08.019.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. P. Combust. Inst 33 (1):193–200. doi:10.1016/j.proci.2010.05.027.
  • Moc, J., G. Black, J. M. Simmie, and H. J. Curran. 2009. The unimolecular decomposition and H-abstraction reactions by HO and HO2 from n-Butanol. AIP Conf. Proc 1148 (2):161–64. doi:10.1063/1.3225261.
  • Niemann, U., K. Seshadri, and F. A. Williams. 2013. Effect of pressure on structure and extinction of near-limit hydrogen counterflow diffusion flames. P. Combust. Inst 34 (1):881–86. doi:10.1016/j.proci.2012.06.145.
  • Oh, C. B., A. Hamins, M. Bundy, and J. Park. 2008. The two-dimensional structure of low strain rate counterflow nonpremixed-methane flames in normal and microgravity. Combust. Theor. Model 12 (2):283–302. doi:10.1080/13647830701642201.
  • Ombrello, T., S. H. Won, Y. Ju, and S. Williams. 2010. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combust. Flame 157 (10):1906–15. doi:10.1016/j.combustflame.2010.02.004.
  • Reuter, C. B., M. Lee, S. H. Won, and Y. Ju. 2017. Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame 179 (1):23–32. doi:10.1016/j.combustflame.2017.01.028.
  • Reuter, C. B., S. H. Won, and Y. Ju. 2016. Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combust. Flame 166 (APR):125–32. doi:10.1016/j.combustflame.2016.01.008.
  • Sarathy, S. M., C. Yeung, C. K. Westbrook, W. J. Pitz, M. Mehl, and M. J. Thomson. 2011. An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. Combust. Flame 158 (11):1277–87. doi:10.1016/j.combustflame.2010.11.008.
  • Seshadri, K., and F. A. Williams. 1978. Laminar flow between parallel plates with injection of a reactant at high Reynolds number. Int. J. Heat Mass Tran 21 (2):251–53. doi:10.1016/0017-9310(78)90230-2.
  • Tanaka, S., F. Ayala, and J. C. Keck. 2003. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust. Flame 132:219–39. doi:10.1016/S0010-2180(02)00457-1.
  • Townend, D. T. A. 1948. Ignition regions of hydrocarbons. Proc. Symp. Combust 21 (2):134–45. doi:10.1021/cr60069a005.
  • Westbrook, C. K. 2000. Chemical kinetics of hydrocarbon ignition in practical combustion systems. P. Combust. Inst 28 (2):1563–77. doi:10.1016/S0082-0784(00)80554-8.
  • Won, S. H., B. Jiang, and P. Dievart. 2015. Self-sustaining n-heptane cool diffusion flames activated by ozone. P. Combust. Inst 35 (1):881–88. doi:10.1016/j.proci.2014.05.021.
  • Xu, Y., T. I. Farouk, M. C. Hicks, and C. T. Avedisian. 2020. Initial diameter effects on combustion of unsupported equi-volume n -heptane/iso-octane mixture droplets and the transition to cool flame behavior: Experimental observations and detailed numerical modeling. Combust. Flame 220:82–91. doi:10.1016/j.combustflame.2020.06.012.
  • Yang, C. H., and B. F. Gray. 1969. Unified theory of explosions, cool flames and two stage ignitions. Part 2. Trans. Faraday Soc 65:1614–22. doi:10.1039/tf9696501614.
  • Zhao, H., X. Yang, and Y. Ju. 2016. Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry. Combust. Flame 173 (8):187–94. doi:10.1016/j.combustflame.2016.08.008.
  • Zhou, M., O. R. Yehia, W. Xu, C. B. Reuter, Z. Wang, C. Yan, B. Jiang, and Y. Ju. 2021. The radical index and the effect of oxygen concentration on non-premixed cool flame extinction of large n-alkanes. Combust. Flame 231:111471. doi:10.1016/j.combustflame.2021.111471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.