302
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of Key Influencing Factors on the Flame Inclination of Low Concentration Methane (LCM) Combustion in Porous Burner

, ORCID Icon, , &
Pages 4032-4052 | Received 31 Dec 2021, Accepted 14 Mar 2022, Published online: 21 Mar 2022

References

  • Çetin, B., K. G. Güler, and M. H. Aksel. 2017. Computational modeling of vehicle radiators using porous medium approach. In Heat exchangers - design, experiment and simulation Sohel Murshed, S. M., and Manuel Matos Lopes,243–62, IntechOpen.
  • Chen, L., Y. Xia, B. Li, and J. Shi. 2018. Flame front inclination instability in the porous media combustion with inhomogeneous preheating temperature distribution. Appl. Therm. Eng. 128:1520–30. doi:10.1016/j.applthermaleng.2017.09.085.
  • Colorado, A., and V. McDonell. 2018. Surface stabilized combustion technology: An experimental evaluation of the extent of its fuel-flexibility and pollutant emissions using low and high calorific value fuels. Appl. Therm. Eng. 136:206–18. doi:10.1016/j.applthermaleng.2018.02.081.
  • Dai, H., B. Lin, C. Zhai, Y. Hong, and Q. Li. 2015. Sub-adiabatic combustion of premixed gas in ceramic foam burner. Int. J. Heat Mass Transfer. 91:318–29. doi:10.1016/j.ijheatmasstransfer.2015.07.122.
  • Dasgupta, A. Design and modeling of A heat exchanger for porous combustor powered steam generators in automotive industry 2017.
  • Dobrego, K. V., I. M. Kozlov, V. I. Bubnovich, and C. E. Rosas. 2003. Dynamics of filtration combustion front perturbation in the tubular porous media burner. Int. J. Heat Mass Trans. 46 (17):3279–89. doi:10.1016/S0017-9310(03)00125-X.
  • Dobrego, K. V., S. A. Zhdanok, and A. I. Zaruba. 2001. Experimental and analytical investigation of the gas filtration combustion inclination instability. Int. J. Heat Mass Trans. 44 (11):2127–36. doi:10.1016/S0017-9310(00)00263-5.
  • Ellzey, J. L., E. L. Belmont, and C. H. Smith. 2019. Heat recirculating reactors: Fundamental research and applications. Prog. Energy Combust. 72:32–58. doi:10.1016/j.pecs.2018.12.001.
  • Fu, X., R. Viskanta, and J. P. Gore. 1998. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Exp. Therm. Fluid Sci. 17 (4):285–93. doi:10.1016/S0894-1777(98)10002-X.
  • Gosiewski, K., and A. Pawlaczyk-Kurek. 2019. Aerodynamic CFD simulations of experimental and industrial thermal flow reversal reactors. Chem. Eng. J. 373:1367–79. doi:10.1016/j.cej.2019.03.274.
  • Hsu, P. F., and J. R. Howell. 1992. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia. Exp. Heat Transfer 5 (4):293–313. doi:10.1080/08916159208946446.
  • Joachim, G., and A. M. Wünning. 2009. Heat transfer. In Handbook of burner technology for industrial furnaces. Germany: Vulkan-Verlag GmbH.
  • Jugjai, S., and N. Rungsimuntuchart. 2002. High efficiency heat-recirculating domestic gas burners. Exp. Therm. Fluid Sci. 26 (5):581–92. doi:10.1016/S0894-1777(02)00164-4.
  • Kakutkina, N. A. 2005. Some stability aspects of gas combustion in porous media. Combust. Explo. Shock Waves. 41 (4):395–404. doi:10.1007/s10573-005-0048-5.
  • Keramiotis, C., B. Stelzner, D. Trimis, and M. Founti. 2012. Porous burners for low emission combustion: An experimental investigation. Energy 45 (1):213–19. doi:10.1016/j.energy.2011.12.006.
  • Kim, S. G., T. Yokomori, N. I. Kim, S. Kumar, S. Maruyama, and K. Maruta. 2007. Flame behavior in heated porous sand bed. P. Combust. Inst. 31 (2):2117–24. doi:10.1016/j.proci.2006.08.070.
  • Lan, B., and Y. Li. 2018. Numerical study on thermal oxidation of lean coal mine methane in a thermal flow-reversal reactor. Chem. Eng. J. 351:922–29. doi:10.1016/j.cej.2018.06.153.
  • Mao, M., J. Shi, Y. Liu, M. Gao, and Q. Chen. 2020. Experimental investigation on control of temperature asymmetry and nonuniformity in a pilot scale thermal flow reversal reactor. Appl. Therm. Eng. 175:115375. doi:10.1016/j.applthermaleng.2020.115375.
  • Minaev, S. S., S. I. Potytnyakov, and V. S. Babkin. 1994. Combustion wave instability in the filtration combustion of gases. Combust. Explo. Shock Waves. 30 (3):306–10. doi:10.1007/BF00789421.
  • Olmos-Villalba, L., B. Herrera, and K. Cacua. 2018. Experimental analysis of thermal efficiency of a porous/swirl burner applied to industrial cooking. Indian J. Sci.Technol. 11 (14):1–8. doi:10.17485/ijst/2018/v11i14/118145.
  • Pan, J. F., D. Wu, Y. X. Liu, H. F. Zhang, A. K. Tang, and H. Xue. 2015. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Appl. Energy 160:802–07. doi:10.1016/j.apenergy.2014.12.049.
  • Panigrahy, S., and S. C. Mishra. 2018. The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy 150:176–89. doi:10.1016/j.energy.2018.02.121.
  • Ulrich Renz. 2009. Heat transfer. In Handbook of burner technology for industrial furnaces. Edited by Joachim, G., and A. M. Wünning, 31–50, Germany: Vulkan-Verlag GmbH.
  • Saveliev, A. V., L. A. Kennedy, A. A. Fridman, and I. K. Puri. 1996. Structures of multiple combustion waves formed under filtration of lean hydrogen–air mixtures in a packed bed. Proc. Combust. Inst. 26 (2):3369–75. doi:10.1016/S0082-0784(96)80185-8.
  • Shi, J. R., M. Z. Xie, Z. J. Xue, Y. N. Xu, and H. S. Liu. 2012. Experimental and numerical studies on inclined flame evolution in packing bed. Int. J. Heat Mass Trans. 55 (23–24):7063–71. doi:10.1016/j.ijheatmasstransfer.2012.07.020.
  • Shi, J. R., C. M. Yu, B. W. Li, Y. F. Xia, and Z. J. Xue. 2013. Experimental and numerical studies on the flame instabilities in porous media. Fuel 106:674–81. doi:10.1016/j.fuel.2013.01.010.
  • Tarawneh, M., A. Alshqirate, K. Khasawneh, and M. Hammad. 2013. Experimental study on the effect of porous medium on performance of a single tube heat exchanger: A CO2 case study, Heat Tran. Asian Res. 42:473–84.
  • Trimis, D., and F. Durst. 1996. Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121 (1–6):153–68. doi:10.1080/00102209608935592.
  • Wood, S., and A. T. Harris. 2008. Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34 (5):667–84. doi:10.1016/j.pecs.2008.04.003.
  • Wu, Z., C. Caliot, F. Bai, G. Flamant, Z. Wang, J. Zhang, and C. Tian. 2010. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Appl. Energy 87 (2):504–13. doi:10.1016/j.apenergy.2009.08.009.
  • Xia, Y., L. Chen, J. Shi, and B. Li. 2020. Flame front deformation instabilities of filtration combustion for initial thermal perturbation. Chem. Eng. Technol. 43 (8):1608–17. doi:10.1002/ceat.201900649.
  • Younis, L. B., and R. Viskanta. 1993. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transfer. 36 (6):1425–34. doi:10.1016/S0017-9310(05)80053-5.
  • Yu, B., S. Kum, C. Lee, and S. Lee. 2013. Combustion characteristics and thermal efficiency for premixed porous-media types of burners. Energy 53:343–50. doi:10.1016/j.energy.2013.02.035.
  • Zhang, G. Y., Q. Z. Li, X. X. Liu, B. Q. Lin, and X. X. Li. 2022. Numerical investigations on an improved dual-channel porous combustor fueled with lean methane for enhancing thermal performance. Fuel 309:122228. doi:10.1016/j.fuel.2021.122228.
  • Zhao, C. Y. 2012. Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transfer. 55 (13–14):3618–32. doi:10.1016/j.ijheatmasstransfer.2012.03.017.
  • Zheng, C. H., L. M. Cheng, A. Saveliev, Z. Y. Luo, and K. F. Cen. 2011. Numerical studies on flame inclination in porous media combustors. Int. J. Heat Mass Trans. 54 (15–16):3642–49. doi:10.1016/j.ijheatmasstransfer.2011.02.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.