230
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study and mechanism analysis on the suppression of flour explosion by NaCl and NaHCO3

, ORCID Icon, , , ORCID Icon, , , , & show all
Pages 4053-4068 | Received 20 Jul 2021, Accepted 18 Mar 2022, Published online: 29 Mar 2022

References

  • Babushok, V. I., K. L. McNesby, A. W. Miziolek, and R. R. Skaggs. 2003. Modeling of synergistic effects in flame inhibition by 2-H heptafluoropropane blended with sodium bicarbonate. Combustion and Flame 133 (1–2):201–05. doi:10.1016/s0010-2180(02)00572-2.
  • Babushok, V., and W. Tsang. 2000. Inhibitor rankings for alkane combustion. Combustion and Flame 123 (4):488–506. doi:10.1016/S0010-2180(00)00168-1.
  • Cao, W., W. Li., Y. Zhang, Z. Zhou, Y. Zhao, Z. Yang, X. Liu, and S. Yu. 2021. Experimental study on the explosion behaviors of premixed syngas-air mixtures in ducts. Int. J. Hydrogen Energy (44). doi:10.1016/J.IJHYDENE.2021.04.120.
  • Chen, Z., B. Fan, and X. Jiang. 2006. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas. J. Loss Prev. Process Ind. 19 (6):648–55. doi:10.1016/j.jlp.2006.03.006.
  • Dastidar, A., and P. Amyotte. 2002. Determination of minimum inerting concentrations for combustible dusts in a laboratory-scale chamber. Proc. Combust. Inst. (6). doi:10.1205/095758202321154916.
  • Du, X., Z. Du, Zhao. L., and Yan. Y. 2013. Study on the feasibility of common potassium salts applied to superfine powder fire-extinguishing agent[J]. Ind. Safety Environ. Prot. 39 (9):61–64.
  • Gao, L., H. Xu, and D. Su. 2018. Suppression of corn starch/air mixture explosion by superfine sodium bicarbonate powder[J]. Chinese J. Safety Sci. 28 (8):49–54. doi:10.16265/j.cnki.1003-3033.2018.08.009.
  • Gao, W., S. Zhong, N. Miao, and H. Liu. 2013. Effect of ignition on the explosion behavior of 1-Octadecanol/air mixtures. Powder Technol 241 (4):105–14. doi:10.1016/j.powtec.2013.03.015.
  • Guan, W., J. Zhao, and C. Dong. 2021. Flour explosion characteristics based on orthogonal experiment[J]. Ind. Safety Environ. Prot. 47 (2):43–45.
  • Hertzberg, M., K. L. Cashdollar, I. Zlochower, and D. L. Ng. 1985. Inhibition and extinction of explosions in heterogeneous mixtures. Symp. (Int.) Combust 20 (1):1691–700. doi:10.1016/S0082-0784(85)80665-2.
  • Jiang, H., M. Bi, B. Li, D. Ma, and W. Gao. 2019. Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4. Combustion and Flame 200:97–114. doi:10.1016/j.combustflame.2018.11.016.
  • Liu, J., X. Meng, K. Yan, Z. Wang, W. Dai, Z. Wang, F. Li, P. Yang, and Y. Liu. 2022. Study on the effect and mechanism of Ca(H2PO4)2 and CaCO3 powders on inhibiting the explosion of titanium powder. Powder Technology 395:158–67. doi:10.1016/j.powtec.2021.09.067.
  • Liu, Y., and Q. Wang. 2006. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym. Degrad. Stab. 91 (12):3103–09. doi:10.1016/j.polymdegradstab.2006.07.026.
  • Lu, K., X. Chen, Y. Wang, and T. Zhao. 2021. Experimental study on inhibition of cornstarch dust explosion with sodium bicarbonate and its solid decomposition product[J]. J. Safety Sci. Technol. 17 (9):126–31.
  • Man, C. K., and M. L. Harris. 2014. Participation of large particles in coal dust explosions. J. Loss Prev. Process Ind. 27 (4):49–54. doi:10.1016/j.jlp.2013.11.004.
  • Martin, C., M. Comet, F. Schnell, J. E. Berthe, and D. Spitzer. 2018. “Aluminum nanopowder: A substance to be handled with care.“ J. Hazard. Mater. 342 (4):347–52. doi:10.1016/j.jhazmat.2017.08.018.
  • Ni, X., K. Kuang, D. Yang, X. Jin, and G. Liao. 2009. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core–shell structure. Fire Safety Journal 44(7):968–75. doi:10.1016/j.firesaf.2009.06.004.
  • Niu, Y., L. Zhang, B. Shi, Q. Yang, and Z. Zhong. 2021. Methane–coal dust mixed explosion in transversal pipe networks. Combust. Sci. Technol. 193 (10):1734–46. doi:10.1080/00102202.2019.1711071.
  • Schwer, D. A., and K. Kailasanath. 2007. Numerical simulations of the mitigation of unconfined explosions using water-mist. Proceedings of the Combustion Institute 31(2): 2361–2369. doi:10.1016/j.proci.2006.07.145.
  • Sridhar Iya, K., S. Wollowitz, and W. E. Kaskan. 1975. The mechanism of flame inhibition by sodium salts.Symposium (International) on Combustion 15(1): 329–336. doi:10.1016/S0082-0784(75)80308-0.
  • Tao, W., and J. Li. 2018. Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Appl. Surf. Sci. 456 (4):751–62. doi:10.1016/j.apsusc.2018.06.215.
  • Taveau, J., J. Vingerhoets, J. Snoeys, J. Going, and T. Farrell. 2015. Suppression of metal dust deflagrations. J. Loss Prevention Process Ind. 36 (4):244–51. doi:10.1016/j.jlp.2015.02.011.
  • Wan , Z., M. Idris, J. Gimbun, and S. Z. Sulaiman. 2019. Assessment of explosibility and explosion severity of rice flour at different concentration and ignition time. Process Safety Progress (1): 1–8. doi: 10.1002/prs.12107.
  • Wang, Y., Y. Cheng, M. Yu, Y. Li, J. Cao, L. Zheng, and H.-W. Yi. 2017. Methane explosion suppression characteristics based on the NaHCO3 /red-mud composite powders with core-shell structure. J. Hazard. Mater. 335:84–91. doi:10.1016/j.jhazmat.2017.04.031.
  • Wang, J., X. Meng, X. Ma, Q. Xiao, B. Liu, and G. Zhang. 2019a. Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust. Process Safety Prog 38(3). doi: 10.1002/prs.12075.
  • Wang, Z., X. Meng, K. Yan, Z. Li, Q. Xiao, X. Ma, and J. Wang. 2021. Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2[J]. Powder Technology 384:284–96. doi:10.1016/j.powtec.2021.02.037.
  • Wang, Z., X. Meng, K. Yan, X. Ma, Q. Xiao, J. Wang, and J. Bai. 2020. Inhibition effects of Al(OH)3 and Mg(OH)2 on Al-Mg alloy dust explosion[J]. J. Loss Prevention Process Ind. 66:104206. doi:10.1016/j.jlp.2020.104206.
  • Wang, J., Y. Zhang, H. Su, J.Chen, B. Liu, and Y, Zhang. 2019b. Explosion characteristics and flame propagation behavior of mixed dust cloud of coal dust and oil shale dust. Energies 20. doi:10.3390/en12203807.
  • Wei, X., Y. Zhang, G. Wu, X. Zhang, Y. Zhang, and X. Wang. 2021. Study on explosion suppression of coal dust with different particle size by shell powder and NaHCO3[J]. Fuel 306:121709. doi:10.1016/j.fuel.2021.121709.
  • Xiao, Q., B. Liu, X. Ma, J. Wang, X. Meng, and B. Guo. 2021. An experimental investigation on the ignition sensitivity and flame propagation behavior of mixed oil shale–coal dust. Combust. Sci. Technol 8. doi:10.1080/00102202.2019.1695606.
  • Yan, K., and X. Meng. 2020a. An investigation on the aluminum dust explosion suppression efficiency and mechanism of a NaHCO3 /DE composite powder. Advanced Powder Technol. 31 (8):3246–55. doi:10.1016/j.apt.2020.06.014.
  • Yan, K., X. Meng, Z. Wang, Q. Xiao, X. Ma, and Z. Cui. 2020b. Inhibition of Aluminum Powder Explosion by a NaHCO3/Kaolin Composite Powder Suppressant. Combustion Science and Technology 1–17. doi:10.1080/00102202.2020.1786377.
  • Yang, H., L. Song, Q. Tai, X. Wang, B. Yu, Y. Yuan, Y. Hu, and R. K. K. Yuen. 2014. Comparative study on the flame retarded efficiency of melamine phosphate, mel-amine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab 105(2014):248–56. doi:10.1016/j.polymdegradstab.2014.04.021.
  • Yilmaz, H., O. Cam, and I. Yilmaz. 2020. Experimental Investigation of Flame Characteristics of H/CO/CH/CO; Synthetic Gas Mixtures. Combustion Science and Technology 1–23. doi:10.1080/00102202.2020.1716219.
  • Yuan, S. 2018. Experimental study on the dust combustion and explosion characteristics and inerting explosion suppression of corn starch[D]. Northeast Petroleum University,Database Provider: CNKI (In China).
  • Zhang, Q., Q. Yan, R. C. Wadams, W. Linthicum, W. Yu, and B. D. Huey. 2019. Experimental study on explosion process of flour deposits/air mixture in horizontal pipelines. Powder Technol. 360 ({4}):1271–77. doi:10.1016/j.powtec.2019.02.020.
  • Zhao, J., G. Tang, Y. Wan, and Y. Han. 2020. Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon 6 (3):e03457. doi:10.1016/j.heliyon.2020.e03457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.