345
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Spray characteristics of biodiesel-polyoxymethylene dimethyl ethers (PODE) blends in a constant volume chamber

, , , , , & show all
Pages 4069-4091 | Received 06 Jan 2022, Accepted 18 Mar 2022, Published online: 29 Mar 2022

References

  • Anis, S., and G. N. Budiandono. 2019. Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances. Renew Energy 140:274–80. doi:10.1016/j.renene.2019.03.062.
  • Awad, O. I., X. Ma, M. Kamil, O. M. Ali, Y. Ma, and S. Shuai. 2020. Overview of polyoxymethylene dimethyl ether additive as an eco-friendly fuel for an internal combustion engine: Current application and environmental impacts. Sci Total Environ 715:136849. doi:10.1016/j.scitotenv.2020.136849.
  • Baranowski, C. J., A. M. Bahmanpour, and O. Krocher. 2017. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review. Appl Catal B-Environ 217:407–20. doi:10.1016/j.apcatb.2017.06.007.
  • Bohl, T., G. Tian, A. Smallbone, and A. P. Roskilly. 2017. Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel. Appl. Energy 186:562–73. doi:10.1016/j.apenergy.2016.10.082.
  • Corral-Gomez, L., G. Rubio-Gomez, S. Martinez-Martinez, and F. A. Sanchez-Cruz. 2019. Effect of diesel-biodiesel-ethanol blends on the spray macroscopic parameters in a common-rail diesel injection system. Fuel 241:876–83. doi:10.1016/j.fuel.2018.12.081.
  • Crua, C., M. R. Heikal, and M. R. Gold. 2015. Microscopic imaging of the initial stage of diesel spray formation. Fuel 157:140–50. doi:10.1016/j.fuel.2015.04.041.
  • Delacourt, E., B. Desmet, and B. Besson. 2005. Characterisation of very high pressure diesel sprays using digital imaging techniques. Fuel 84 (7–8):859–67. doi:10.1016/j.fuel.2004.12.003.
  • Desantes, J. M., R. Payri, F. J. Salvador, and A. Gil. 2006. Development and validation of a theoretical model for diesel spray penetration. Fuel 85 (7–8):910–17. doi:10.1016/j.fuel.2005.10.023.
  • Duraisamy, G., M. Rangasamy, and N. Govindan. 2020. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renew Energy 145:542–56. doi:10.1016/j.renene.2019.06.044.
  • Fu, W., F. Li, K. Meng, Y. Liu, W. Shi, and Q. Lin. 2019. Experiment and analysis of spray characteristics of biodiesel blending with di-n-butyl ether in a direct injection combustion chamber. Energy 185:77–89. doi:10.1016/j.energy.2019.06.069.
  • Ghahremani, A. R., M. Jafari, M. Ahari, M. H. Saidi, A. Hajinezhad, and A. A. Mozaffari. 2018. Spray characteristics and atomization behavior of bio-diesel (Norouzak) and diesel fuel blends. Particulate Sci Technol 36 (3):270–81. doi:10.1080/02726351.2016.1244870.
  • Ghahremani, A. R., M. H. Saidi, A. Hajinezhad, and A. A. Mozafari. 2017. Experimental investigation of spray characteristics of a modified bio-diesel in a direct injection combustion chamber. Exp Therm Fluid Sci 81:445–53. doi:10.1016/j.expthermflusci.2016.09.010.
  • Hackbarth, K., P. Haltenort, U. Arnold, and J. Sauer. 2018. Recent progress in the production, application and evaluation of oxymethylene ethers. Chemie Ingenieur Technik 90 (10):1520–28. doi:10.1002/cite.201800068.
  • Hawi, M., H. Kosaka, S. Sato, T. Nagasawa, A. Elwardany, and M. Ahmed. 2019. Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels. Fuel 254.
  • Hirner, F. S., J. Hwang, C. Bae, C. Patel, T. Gupta, and A. K. Agarwal. 2019. Nanostructure characterization of soot particles from biodiesel and diesel spray flame in a constant volume combustion chamber. Fuel 235:130–49. doi:10.1016/j.fuel.2018.07.092.
  • Hiroyasu, H., and M. Arai 1990. Structures of fuel sprays in diesel engines. SAE Technical Papers.
  • Huang, H., Q. Liu, W. Teng, M. Pan, C. Liu, and Q. Wang. 2018. Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures. Appl. Energy 227:38–48. doi:10.1016/j.apenergy.2017.09.088.
  • Huang, H., W. Teng, Z. Li, Q. Liu, Q. Wang, and M. Pan. 2017. Improvement of emission characteristics and maximum pressure rise rate of diesel engines fueled with n-butanol/PODE3-4/diesel blends at high injection pressure. Energy Convers. Manage. 152:45–56. doi:10.1016/j.enconman.2017.09.038.
  • Kegl, B., and L. Lesnik. 2018. Modeling of macroscopic mineral diesel and biodiesel spray characteristics. Fuel 222:810–20. doi:10.1016/j.fuel.2018.02.169.
  • Kim, K., and O. Lim. 2020. Investigation of the spray development process of gasoline-biodiesel blended fuel sprays in a constant volume chamber. Energies 13 (18).
  • Knothe, G., and L. F. Razon. 2017. Biodiesel fuels. Prog Energy Combust Sci 58:36–59.
  • Kostas, J., D. Honnery, and J. Soria. 2009. Time resolved measurements of the initial stages of fuel spray penetration. Fuel 88 (11):2225–37. doi:10.1016/j.fuel.2009.05.013.
  • Kuti, O. A., S. M. Sarathy, and K. Nishida. 2020. Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions. Fuel 267.
  • Li, B., Y. Li, H. Liu, F. Liu, Z. Wang, and J. Wang. 2017. Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl. Energy 206:425–31. doi:10.1016/j.apenergy.2017.08.206.
  • Li, D., Y. Gao, S. Liu, Z. Ma, and Y. Wei. 2016. Effect of polyoxymethylene dimethyl ethers addition on spray and atomization characteristics using a common rail diesel injection system. Fuel 186:235–47. doi:10.1016/j.fuel.2016.08.082.
  • Liu, H., Z. Wang, B. Li, J. Wang, and X. He. 2016a. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP). Fuel 186:639–47. doi:10.1016/j.fuel.2016.09.006.
  • Liu, H. Y., X. Ma, B. W. Li, L. F. Chen, Z. Wang, and J. X. Wang. 2017a. Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel 209:62–68. doi:10.1016/j.fuel.2017.07.066.
  • Liu, H. Y., Z. Wang, J. X. Wang, and X. He. 2016b. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy 97:105–12. doi:10.1016/j.energy.2015.12.110.
  • Liu, H. Y., Z. Wang, J. X. Wang, X. He, Y. Y. Zheng, Q. Tang, and J. F. Wang. 2015. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Energy 88:793–800. doi:10.1016/j.energy.2015.05.088.
  • Liu, H. Y., Z. Wang, J. Zhang, J. X. Wang, and S. J. Shuai. 2017b. Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines. Appl. Energy 185:1393–402. doi:10.1016/j.apenergy.2015.10.183.
  • Liu, J., L. Feng, H. Wang, Z. Zheng, B. Chen, D. Zhang, and M. Yao. 2019a. Spray characteristics of gasoline/PODE and diesel/PODE blends in a constant volume chamber. Appl. Therm. Eng. 159:113850. doi:10.1016/j.applthermaleng.2019.113850.
  • Liu, J., H. Shang, H. Wang, Z. Zheng, Q. Wang, Z. Xue, and M. Yao. 2017c. Investigation on partially premixed combustion fueled with gasoline and PODE blends in a multi-cylinder heavy-duty diesel engine. Fuel 193:101–11. doi:10.1016/j.fuel.2016.12.045.
  • Liu, Y., J. Tian, F. Li, L. Bao, K. Han, and Q. Lin. 2022a. Experiment and analysis on the spray characteristics of diesel/polyoxymethylene dimethyl ethers (PODE)/ethanol blends in non-reacting environment. Exp Therm Fluid Sci 131:110528. doi:10.1016/j.expthermflusci.2021.110528.
  • Liu, Y., J. J. Tian, Z. H. Song, F. Y. Li, W. L. Zhou, and Q. Z. Lin. 2022b. Spray characteristics of diesel, biodiesel, polyoxymethylene dimethyl ethers blends and prediction of spray tip penetration using artificial neural network. Phys Fluids 34 (1):015117. doi:10.1063/5.0077405.
  • Liu, Y., Z. Yuan, Y. Ma, J. Fu, R. Huang, and J. Liu. 2019b. Analysis of spray combustion characteristics of diesel, biodiesel and their n-pentanol blends based on a one-dimensional semi-phenomenological model. Appl. Energy 238:996–1009. doi:10.1016/j.apenergy.2019.01.176.
  • Ma, Y., L. Cui, X. Ma, and J. Wang. 2020. Optical study on spray combustion characteristics of PODE/diesel blends in different ambient conditions. Fuel 272.
  • Mancaruso, E., C. Perozziello, L. Sequino, and B. M. Vaglieco. 2019. Characterization of pure and blended biodiesel spray in a compression ignition engine by means of advanced diagnostics and 1D model. Fuel 239:1102–14. doi:10.1016/j.fuel.2018.11.099.
  • Meng, X., E. J. Hu, K. H. Yoo, A. L. Boehman, and Z. H. Huang. 2019. Experimental and numerical study on autoignition characteristics of the polyoxymethylene dimethyl ether/diesel blends. Energy & Fuels 33 (3):2538–46. doi:10.1021/acs.energyfuels.8b04469.
  • Mohsin, R., Z. A. Majid, A. H. Shihnan, N. S. Nasri, and Z. Sharer. 2014. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Convers Manag 88:821–28. doi:10.1016/j.enconman.2014.09.027.
  • Naber, J. D., and D. L. Siebers. 1996. Effects of gas density and vaporization on penetration and dispersion of diesel sprays. Int Congr Expo.
  • Pachiannan, T., W. Zhong, T. Xuan, B. Li, Z. He, Q. Wang, and X. Yu. 2019. Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber. Renew Energy 140:761–71. doi:10.1016/j.renene.2019.03.063.
  • Prasath, B. R., P. Tamilporai, and M. F. Shabir. 2010. Analysis of combustion, performance and emission characteristics of low heat rejection engine using biodiesel. Int J Therm Sci 49 (12):2483–90. doi:10.1016/j.ijthermalsci.2010.07.010.
  • Qi, D. H., H. Chen, L. M. Geng, and Y. Z. Bian. 2011. Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew Energy 36 (4):1252–58. doi:10.1016/j.renene.2010.09.021.
  • Rakopoulos, C. D., D. C. Rakopoulos, and D. C. Kyritsis. 2003. Development and validation of a comprehensive two-zone model for combustion and emissions formation in a DI diesel engine. Int J Energy Res 27 (14):1221–49. doi:10.1002/er.939.
  • Schemme, S., S. Meschede, M. Koller, R. C. Samsun, R. Peters, and D. Stolten. 2020. Property data estimation for hemiformals, methylene glycols and polyoxymethylene dimethyl ethers and process optimization in formaldehyde synthesis. Energies 13 (13):3401. doi:10.3390/en13133401.
  • Singh, G., M. Juddoo, A. Kourmatzis, M. J. Dunn, and A. R. Masri. 2020. Heat release zones in turbulent, moderately dense spray flames of ethanol and biodiesel. Combust Flame 220:298–311. doi:10.1016/j.combustflame.2020.07.005.
  • Sun, W. Y., G. Q. Wang, S. Li, R. Z. Zhang, B. Yang, J. Z. Yang, Y. Y. Li, C. K. Westbrook, and C. K. Law. 2017. Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: An experimental and modeling study. Proc Combust Inst 36 (1):1269–78. doi:10.1016/j.proci.2016.05.058.
  • Thongchai, S., and O. Lim. 2020. Macroscopic spray behavior of a single-hole common rail diesel injector using gasoline-blended 5% biodiesel. Energies 13 (9):2276. doi:10.3390/en13092276.
  • Tian, J., Y. Liu, H. Bi, F. Li, L. Bao, K. Han, W. Zhou, Z. Ni, and Q. Lin. 2022. Experimental study on the spray characteristics of octanol diesel and prediction of spray tip penetration by ANN model. Energy 239.
  • Tian, J., Y. Liu, F. Li, K. Han, W. Zhou, Q. Lin, and K. Meng. 2021. Experimental study on spray characteristics of octanol biodiesel and modification of spray tip penetration model. Physics of Fluids 33 (9):091902. doi:10.1063/5.0063572.
  • Tuannghia, N., P. MinhHieu, and A. Tuan Le. 2020. Spray, combustion, performance and emission characteristics of a common rail diesel engine fueled by fish-oil biodiesel blends. Fuel 269.
  • Wang, P., M. Jia, Y. Zhang, G. Xu, Y. Chang, and Z. Xu. 2019. Development of a decoupling physical-chemical surrogate (DPCS) model for simulation of the spray and combustion of multi-component biodiesel fuels. Fuel 240:16–30. doi:10.1016/j.fuel.2018.11.134.
  • Wang, X., Z. Huang, O. A. Kuti, W. Zhang, and K. Nishida. 2010. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. Int J Heat and Fluid Flow 31 (4):659–66. doi:10.1016/j.ijheatfluidflow.2010.03.006.
  • Wang, Z., H. Liu, X. Ma, J. Wang, S. Shuai, and R. D. Reitz. 2016. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel 183:206–13. doi:10.1016/j.fuel.2016.06.033.
  • Wu, J. B., Z. P. Sun, Z. H. Wei, Z. F. Qin, Y. X. Zhao, K. Yang, L. Ji, M. Lu, and M. Li. 2020. Catalytic performance and mechanistic insights into the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over ZSM-5 zeolite. Catal Letters 150 (12):3542–52. doi:10.1007/s10562-020-03252-6.
  • Xuan, T., A. I. El-Seesy, Y. Mi, P. Lu, W. Zhong, Z. He, and Q. Wang. 2020. Effects of an injector cooling jacket on combustion characteristics of compressed-ignition sprays with a gasoline-hydrogenated catalytic biodiesel blend. Fuel 276.
  • Yu, S., B. Yin, W. Deng, H. Jia, Z. Ye, B. Xu, and H. Xu. 2019. Experimental study on the spray and mixing characteristics for equilateral triangular and circular nozzles with diesel and biodiesel under high injection pressures. Fuel 239:97–107. doi:10.1016/j.fuel.2018.10.146.
  • Yuan, W., J. Liao, B. Li, and W. Zhong. 2020. Experimental study on spray characteristics of gasoline/hydrogenated catalytic biodiesel under GCI conditions. J Chem 2020:1–9. doi:10.1155/2020/4285460.
  • Zhong, W., B. Li, Z. He, T. Xuan, P. Lu, and Q. Wang. 2019. Experimental study on spray and combustion of gasoline/hydrogenated catalytic biodiesel blends in a constant volume combustion chamber aimed for GCI engines. Fuel 253:129–38. doi:10.1016/j.fuel.2019.04.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.