139
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on Denitrification and in-situ reduction of NO with Fe2O3 catalyst during coke combustion

, , , , , , & show all
Pages 4092-4111 | Received 12 Jan 2022, Accepted 18 Mar 2022, Published online: 17 May 2022

References

  • Asghar, U., S. Rafiq, A. Anwar, T. Iqbal, A. Ahmed, F. Jamil, M. S. Khurram, M. M. Akbar, A. Farooq, N. S. Shah, et al. 2021. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. Journal of Environmental Chemical Engineering 9 (5):106064. doi:10.1016/j.jece.2021.106064.
  • Chen, P., P. Wang, M. Gu, Y. Fang, K. Luo, and J. Fan. 2021. Theoretical and experimental investigation on the effect of CO on N migration and conversion during air-staged coal combustion. J. Energy Inst 97:138–51. doi:10.1016/j.joei.2021.04.012.
  • Cheng, J., F. Zhou, X. Xuan, J. Liu, J. Zhou, and K. Cen. 2016. Cascade chain catalysis of coal combustion by Na–Fe–Ca composite promoters from industrial wastes. Fuel 181:820–26. doi:10.1016/j.fuel.2016.05.064.
  • Cheng, X., L. Wang, Z. Wang, M. Zhang, and C. Ma. 2016. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts. Industrial & Engineering Chemistry Research 55 (50):12710–22. doi:10.1021/acs.iecr.6b00804.
  • Cheng, X., X. Zhang, D. Su, Z. Wang, J. Chang, and C. Ma. 2018. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl Catal B 239:485–501. doi:10.1016/j.apcatb.2018.08.054.
  • Gong, X., Z. Guo, and Z. Wang. 2009. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity. Energy Fuels 23 (9):4547–52. doi:10.1021/ef900550w.
  • Gong, Z., Z. Liu, T. Zhou, Q. Lu, and Y. Sun. 2015. Combustion and NO emission of shenmu char in a 2 MW circulating fluidized bed. Energy & Fuels 29 (2):1219–26. doi:10.1021/ef502768w.
  • Gong, Z., Y. Shao, L. Pang, W. Zhong, and C. Chen. 2019. Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed. Chin. J. Chem. Eng 27 (5):1177–83. doi:10.1016/j.cjche.2018.07.020.
  • Gradoń, B., and J. Lasek. 2010. Investigations of the reduction of NO to N2 by reaction with Fe. Fuel 89 (11):3505–09. doi:10.1016/j.fuel.2010.06.020.
  • Jiao, T., H. Fan, S. Liu, J. Shangguan, W. Du, P. Shi, C. Yang, Y. Wang, and J. Shangguan. 2021. A review on nitrogen transformation and conversion during coal pyrolysis and combustion based on quantum chemical calculation and experimental study. Chin. J. Chem. Eng 35:107–23. doi:10.1016/j.cjche.2021.05.010.
  • Lei, Z., J. Yan, J. Fang, H. Shui, S. Ren, Z. Wang, Z. Li, Y. Kong, and S. Kang. 2021. Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2. Energy 216:119246. doi:10.1016/j.energy.2020.119246.
  • Li, W., D. Liu, S. Li, R. Kong, and H. Ding. 2020. The role of alkali metal in N2O and NO emission during high-sodium Zhundong coals oxy-fuel circulating fluidized bed combustion. Fuel 279:118443. doi:10.1016/j.fuel.2020.118443.
  • Li X-H., W. Turmel, Li W-Y, B.-F. Li, J. Feng, W. Turmel, and W.-Y. Li. 2016. Semi-coke as solid heat carrier for low-temperature coal tar upgrading. Fuel Process. Technol 143:79–85. doi:10.1016/j.fuproc.2015.11.013.
  • Li, Z., J. Jing, Z. Chen, F. Ren, B. Xu, H. Wei, and Z. Ge. 2008. Combustion characteristics and NOxEmissions of two kinds of Swirl Burners in a 300-MWeWall-fired pulverized-coal utility boiler. Combust. Sci. Technol 180 (7):1370–94. doi:10.1080/00102200802043318.
  • Lin, L.-Y., C.-Y. Lee, Y.-R. Zhang, and H. Bai. 2018a. Aerosol-assisted deposition of Mn-Fe oxide catalyst on TiO2 for superior selective catalytic reduction of NO with NH3 at low temperatures. Catal. Commun 111:36–41. doi:10.1016/j.catcom.2018.02.019.
  • Lin, Y., J. Wang, H. Wang, M. Gu, C. Zhang, and H. Chu. 2018b. Effects of Fe2O3 on pyrolysis characteristics of soybean protein and release of NOx precursors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (4):459–65. doi:10.1080/15567036.2017.1423417.
  • Lissianski, V. V., P. M. Maly, V. M. Zamansky, and W. C. Gardiner. 2001. Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources. Ind. Eng. Chem. Res 40 (15):3287–93. doi:10.1021/ie010019q.
  • Liu, S., J. Shangguan, S. Yang, W. Du, X. Yan, and K. Zhang. 2019. Producing effective and clean coke for household combustion activities to reduce gaseous pollutant emissions. Journal of Chemistry 2019:1–12. doi:10.1155/2019/7142804.
  • Liu, T., L. Wei, Y. Yao, L. Dong, and B. Li. 2021. La promoted CuO-MnOx catalysts for optimizing SCR performance of NO with CO. Appl. Surf. Sci 546:148971. doi:10.1016/j.apsusc.2021.148971.
  • Liu, X., Z. Luo, and C. Yu. 2019. Conversion of char-N into NOx and N2O during combustion of biomass char. Fuel 242:389–97. doi:10.1016/j.fuel.2019.01.061.
  • Lv, Z., X. Xiong, S. Yu, H. Tan, B. Xiang, J. Huang, J. Peng, and P. Li. 2021. Experimental investigation on NO emission of semi-coke under high temperature preheating combustion technology. Fuel 283:119293. doi:10.1016/j.fuel.2020.119293.
  • Ma, R., W. Fan, J. Chen, and X. Wu. 2022. Conversion of volatile nitrogen and char nitrogen to NO in oxy-biomass combustion. J. Energy Inst 100:120–28. doi:10.1016/j.joei.2021.10.010.
  • Tan, P. 2016. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J. Catal 338:21–29. doi:10.1016/j.jcat.2016.01.027.
  • Valentim, B., A. Guedes, and D. Boavida. 2011. Nitrogen functionality in “oil window” rank range vitrinite rich coals and chars. Org. Geochem 42 (5):502–09. doi:10.1016/j.orggeochem.2011.03.008.
  • Wang, C., C. Wang, X. Jia, L. Zhao, P. Wang, and D. Che. 2021. NO formation characteristics and fuel-nitrogen transformation mechanism during co-firing of low-volatile carbon-based solid fuels with bituminous coal. Fuel 291:120–34. doi:10.1016/j.fuel.2021.120134.
  • Wang, T.-T., Y. Li, L.-J. Jin, D.-C. Wang, D.-M. Yao, and H.-Q. Hu. 2019. Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts. Journal of Fuel Chemistry and Technology 47 (3):287–96. doi:10.1016/s1872-5813(19)30013-1.
  • Wang, Z., J. Zhou, Z. Wen, J. Liu, and K. Cen. 2007. Effect of mineral matter on NO reduction in coal reburning process. Energy Fuels 21 (4):2038–43. doi:10.1021/ef0604902.
  • Xi, Z., X. Wang, M. Li, and X. Wang. 2020. Characteristic analysis of pulverized coal combustion. Combust. Sci. Technol 193 (9):1605–22. doi:10.1080/00102202.2019.1704282.
  • Xie, X., H. Ai, and Z. Deng. 2020. Impacts of the scattered coal consumption on PM2.5 pollution in China. J. Clean. Prod. 245:118922. doi:10.1016/j.jclepro.2019.118922.
  • Xu, J. 2017. Effect of oxygen concentration on NO formation during coal char combustion. Energy & Fuels 31 (7):459–65. doi:10.1080/15567036.2017.1423417.
  • Xu, J., R. Sun, S. Sun, and Z. Wang. 2017a. Effect of char particle size on NO release during coal char combustion. Energy Fuels 31 (12):13406–15. doi:10.1021/acs.energyfuels.7b02580.
  • Xu, M., S. Li, Y. Wu, and L. Jia. 2017b. Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters. Appl. Energy 199:310–22. doi:10.1016/j.apenergy.2017.05.028.
  • Yang, X., G. Chen, L. Huang, S. Gu, C. Li, Y. Zhang, and B. Jin. 2021. Experimental study on bituminous coal blending in a down‐fired boiler with anthracite combustion system under low load. Asia-Pac. J. Chem. Eng 16 (5):5. doi:10.1002/apj.2676.
  • Zhang, J., C. Wang, X. Jia, P. Wang, and D. Che. 2019. Experimental study on combustion and NO formation characteristics of semi-coke. Fuel 258:116108. doi:10.1016/j.fuel.2019.116108.
  • Zhang, K., S. Yang, S. Liu, J. Shangguan, W. Du, Z. Wang, and Z. Chang. 2020. New strategy toward household coal combustion by remarkably reducing SO2 emission. ACS Omega 5 (6):3047–54. doi:10.1021/acsomega.9b04293.
  • Zhao, Y., G. Zhao, R. Sun, Z. Wang, and H. Liu. 2019. Effects of lignite dewatering treatment on the surface behaviour and NO emission characteristics during the combustion process. Can J Chem Eng 97 (S1):1418–28. doi:10.1002/cjce.23434.
  • Zhao, Z., W. Li, J. Qiu, and B. Li. 2003. Effect of Na, Ca and Fe on the evolution of nitrogen species during pyrolysis and combustion of model chars. Fuel 82 (15–17):1839–44. doi:10.1016/s0016-2361(03)00168-6.
  • Zhijun, S., S. Sheng, N. Xing, X. Jun, L. Qi, Z. Yun, S. Lushi, H. Song, X. Jun, and Z. Anchao. 2015. The investigation of NOx formation and reduction during O2/CO2 combustion of raw coal and coal char. Energy Procedia 66:69–72. doi:10.1016/j.egypro.2015.02.036.
  • Zhou, Q., Y. Zhang, J. Zhang, and D. Ding. 2018. Evolution behaviors of nitrogen functionalities during fast CO2-rich pyrolysis of coal. Fuel 229:135–43. doi:10.1016/j.fuel.2018.05.013.
  • Zhu, S., J. Zhu, and Q. Lyu. 2020. NOX emissions of pulverized coal combustion in high-temperature flue gas. Asia-Pac. J. Chem. Eng 15 (6). doi: 10.1002/apj.2534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.