978
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Diagnostic Approach to Assess the Effect of Temperature Stratification on the Combustion Modes of Gasoline Surrogates

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 4112-4143 | Received 02 Dec 2021, Accepted 22 Mar 2022, Published online: 05 Apr 2022

References

  • ASTM, D. 2013. 2699 standard test method for research octane number of spark- ignition engine fuel. Annu. Book Stand.
  • ASTM, D. 2014. 2700 standard test method for motor octane number of spark- ignition engine fuel. Am. Soc. Test. Mater.
  • Badra, J. A., N. Bokhumseen, N. Mulla, S. M. Sarathy, A. Farooq, G. Kalghatgi, and P. Gaillard. 2015. A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. Fuel 160:458–69. doi:10.1016/j.fuel.2015.08.007.
  • Bates, L., D. Bradley, G. Paczko, and N. Peters. 2016. Engine hot spots: Modes of auto-ignition and reaction propagation. Combust. Flame 166:80–85. doi:10.1016/j.combustflame.2016.01.002.
  • Chen, J. H., E. R. Hawkes, R. Sankaran, S. D. Mason, and H. G. Im. 2006. Di- rect numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. fundamental analysis and diagnostics. Combust. Flame 145 (1–2):128–44. doi:10.1016/j.combustflame.2005.09.017.
  • Chen, C., and S. Sohrab. 1995. Upstream interactions between planar symmetric laminar methane premixed flames. Combust. Flame 101 (3):360–70. doi:10.1016/0010-2180(94)00214-D.
  • Cheng, S., D. Kang, A. Fridlyand, S. S. Goldsborough, C. Saggese, S. Wagnon, M. J. McNenly, M. Mehl, W. J. Pitz, and D. Vuilleumier. 2020. Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions. Combust. Flame 216:369–84. doi:10.1016/j.combustflame.2020.02.032.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114 (1–2):149–77. doi:10.1016/S0010-2180(97)00282-4.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 2002. A comprehensive modeling study of iso-octane oxidation. Combust. Flame 129 (3):253–80. doi:10.1016/S0010-2180(01)00373-X.
  • Dai, P., Z. Chen, S. Chen, and Y. Ju. 2015. Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35 (3):3045–52. doi:10.1016/j.proci.2014.06.102.
  • Dirrenberger, P., P.-A. Glaude, R. Bounaceur, H. Le Gall, A. P. Da Cruz, A. Konnov, and F. Battin-Leclerc. 2014. Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–69. doi:10.1016/j.fuel.2013.07.015.
  • Fang, R., C. Saggese, S. W. Wagnon, A. B. Sahu, H. J. Curran, W. J. Pitz, and C.-J. Sung. 2022. Effect of nitric oxide and exhaust gases on gasoline surrogate autoigni- tion: Iso-octane experiments and modeling. Combust. Flame 236:111807. doi:10.1016/j.combustflame.2021.111807.
  • Fikri, M., J. Herzler, R. Starke, C. Schulz, P. Roth, and G. Kalghatgi. 2008. Au- toignition of gasoline surrogates mixtures at intermediate temperatures and high pressures. Combust. Flame 152 (1–2):276–81. doi:10.1016/j.combustflame.2007.07.010.
  • Frassoldati, A., A. Cuoci, T. Faravelli, and E. Ranzi. 2010. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures. Combust. Sci. Technol. 182 (4–6):653–67. doi:10.1080/00102200903466368.
  • Gauthier, B., D. F. Davidson, and R. K. Hanson. 2004. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust. Flame 139 (4):300–11. doi:10.1016/j.combustflame.2004.08.015.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and trans- port processes. Version 2.4.0.
  • Gordon, R. L., A. R. Masri, S. B. Pope, and G. M. Goldin. 2007. Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow. Combust. Flame 151 (3):495–511. doi:10.1016/j.combustflame.2007.07.001.
  • Gu, X., D. Emerson, and D. Bradley. 2003. Modes of reaction front propagation from hot spots. Combust. Flame 133 (1–2):63–74. doi:10.1016/S0010-2180(02)00541-2.
  • Gupta, S., H. G. Im, and M. Valorani. 2013. Analysis of n-heptane auto-ignition characteristics using computational singular perturbation. Proc. Combust. Inst. 34 (1):1125–33. doi:10.1016/j.proci.2012.07.077.
  • Hawkes, E. R., R. Sankaran, P. P. Pébay, and J. H. Chen. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: Ii. parametric study. Combust. Flame 145 (1–2):145–59. doi:10.1016/j.combustflame.2005.09.018.
  • Jerzembeck, S., N. Peters, P. Pepiot-Desjardins, and H. Pitsch. 2009. Laminar burn- ing velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combust. Flame 156 (2):292–301. doi:10.1016/j.combustflame.2008.11.009.
  • Kahila, H., A. Wehrfritz, O. Kaario, M. G. Masouleh, N. Maes, B. Somers, and V. Vuorinen. 2018. Large-eddy simulation on the influence of injection pressure in reacting spray a. Combust. Flame 191:142–59. doi:10.1016/j.combustflame.2018.01.004.
  • Kahila, H., A. Wehrfritz, O. Kaario, and V. Vuorinen. 2019. Large-eddy simula- tion of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture. Combust. Flame 199:131–51. doi:10.1016/j.combustflame.2018.10.014.
  • Kalghatgi, G., D. Bradley, J. Andrae, and A. Harrison (2009), The nature of ‘super- knock’and its origins in si engines, in ‘IMechE conference on internal combustion engines: performance fuel economy and emissions’, pp. 8–9.
  • Karimkashi, S., H. Kahila, O. Kaario, M. Larmi, and V. Vuorinen. 2020. A nu- merical study on combustion mode characterization for locally stratified dual-fuel mixtures. Combust. Flame 214:121–35. doi:10.1016/j.combustflame.2019.12.030.
  • Krisman, A., E. R. Hawkes, and J. H. Chen. 2018. The structure and propagation of laminar flames under autoignitive conditions. Combust. Flame 188:399–411. doi:10.1016/j.combustflame.2017.09.012.
  • Lee, C., A. Ahmed, E. F. Nasir, J. Badra, G. Kalghatgi, S. M. Sarathy, H. Curran, and A. Farooq. 2017. Autoignition characteristics of oxygenated gasolines. Combust. Flame (186):114–28. doi:10.1016/j.combustflame.2017.07.034.
  • Luong, M. B., Z. Luo, T. Lu, S. H. Chung, and C. S. Yoo. 2013. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temper- ature inhomogeneities. Combust. Flame 160 (10):2038–47. doi:10.1016/j.combustflame.2013.04.012.
  • Luong, M. B., R. Sankaran, G. H. Yu, S. H. Chung, and C. S. Yoo. 2017. On the effect of injection timing on the ignition of lean prf/air/egr mixtures under direct dual fuel stratification conditions. Combust. Flame 183:309–21. doi:10.1016/j.combustflame.2017.05.023.
  • Masouleh, M. G., K. Keskinen, O. Kaario, H. Kahila, S. Karimkashi, and H. Vuorinen. 2019. Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds. Appl. Energy 250:801–20. doi:10.1016/j.apenergy.2019.03.198.
  • Masouleh, M. G., K. Keskinen, O. Kaario, H. Kahila, Y. M. Wright, and V. Vuorinen. 2018. Flow and thermal field effects on cycle-to-cycle variation of combustion: Scale-resolving simulation in a spark ignited simplified engine configuration. Appl. Energy 230:486–505. doi:10.1016/j.apenergy.2018.08.046.
  • Mehl, M., J.-Y. Chen, W. J. Pitz, S. M. Sarathy, and C. K. Westbrook. 2011a. An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for cfd engine modeling. Energy & Fuels 25 (11):5215–23. doi:10.1021/ef201099y.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran. 2011b. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33 (1):193–200. doi:10.1016/j.proci.2010.05.027.
  • Naser, N., S. Y. Yang, G. Kalghatgi, and S. H. Chung. 2017. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (iqt). Fuel 187:117–27. doi:10.1016/j.fuel.2016.09.013.
  • Niemeyer, K. E., N. J. Curtis, and C.-J. Sung. 2017. pyjac: Analytical jacobian generator for chemical kinetics. Comput. Phys. Commun. 215 ():188–203. doi:10.1016/j.cpc.2017.02.004.
  • Nogawa, T., and H. Terashima. 2020. Effects of globally stratified temperature distri- butions and ntc characteristics on end-gas combustion modes. Combust. Sci. Technol. 1–25. doi:10.1080/00102202.2020.1817904.
  • Ranzi, E., A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. Kelley, and C. Law. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38 (4):468–501. doi:10.1016/j.pecs.2012.03.004.
  • Ranzi, E., A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli. 2014. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet. 46 (9):512–42. doi:10.1002/kin.20867.
  • Sankaran, R. (2015), Propagation velocity of a deflagration front in a preheated au- toigniting mixture, technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Oak Ridge.
  • Sankaran, R., H. G. Im, E. R. Hawkes, and J. H. Chen. 2005. The effects of non- uniform temperature distribution on the ignition of a lean homogeneous hydrogen– Air mixture. Proc. Combust. Inst. 30 (1):875–82. doi:10.1016/j.proci.2004.08.176.
  • Sarathy, S. M., A. Farooq, and G. T. Kalghatgi. 2018. Recent progress in gasoline surrogate fuels. Prog. Energy Combust. Sci. 65:67–108.
  • Singh, E., E.-A. Tingas, D. Goussis, H. G. Im, and S. M. Sarathy. 2019. Chemical ignition characteristics of ethanol blending with primary reference fuels. Energy & Fuels 33 (10):10185–96. doi:10.1021/acs.energyfuels.9b01423.
  • Stagni, A., A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi. 2016. Skeletal mechanism reduction through species-targeted sensitivity analysis. Combust. Flame 163:382–93. doi:10.1016/j.combustflame.2015.10.013.
  • Szybist, J. P., and D. A. Splitter. 2017. Pressure and temperature effects on fuels with varying octane sensitivity at high load in si engines. Combust. Flame 177:49–66. doi:10.1016/j.combustflame.2016.12.002.
  • Wang, Z., H. Liu, and R. D. Reitz. 2017. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61:78–112.
  • Wang, Z., Y. Qi, X. He, J. Wang, S. Shuai, and C. K. Law. 2015. Analysis of pre- ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 144:222–27. doi:10.1016/j.fuel.2014.12.061.
  • Wang, H., M. Yao, and R. D. Reitz. 2013. Development of a reduced primary refer- ence fuel mechanism for internal combustion engine combustion simulations. Energy & Fuels 27 (12):7843–53. doi:10.1021/ef401992e.
  • Wei, H., Y. Wang, L. Zhou, L. Zhong, J. Yu, and X. Zhang. 2021. End-gas autoignition mechanism in a downsized spark-ignition engine: Effect of inhomogeneity. Combust. Sci. Technol. 1–28.
  • Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6):620–31. doi:10.1063/1.168744.
  • Yoo, C. S., T. Lu, J. H. Chen, and C. K. Law. 2011. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 158 (9):1727–41. doi:10.1016/j.combustflame.2011.01.025.
  • Yoo, C. S., Z. Luo, T. Lu, H. Kim, and J. H. Chen. 2013. A dns study of igni- tion characteristics of a lean iso-octane/air mixture under hcci and saci conditions. Proc. Combust. Inst. 34 (2):2985–93. doi:10.1016/j.proci.2012.05.019.
  • Zeldovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuni- form initial conditions. Combust. Flame 39 (2):211–14. doi:10.1016/0010-2180(80)90017-6.
  • Zhou, L., K. Li, J. Zhao, X. Zhang, and H. Wei. 2020. Experimental observation of end-gas autoignition and developing detonation in a confined space using gasoline fuel. Combust. Flame 222:1–4. doi:10.1016/j.combustflame.2020.08.035.