330
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Combustion Efficiency and Gas Analysis of RDC with Different Blockage Ratio

, , , &
Pages 4166-4185 | Received 10 Jan 2022, Accepted 27 Mar 2022, Published online: 14 Apr 2022

References

  • Anand, V., A. S. George, C. F. de Luzan, E. Gutmark . 2018. Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities. Exp. Therm. Fluid Sci. 92:314–25. doi:10.1016/j.expthermflusci.2017.12.004.
  • Anand, V., A. S. George, R. Driscoll, E. Gutmark . 2015. Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy. 40(46):16649–59. doi:10.1016/j.ijhydene.2015.09.046.
  • Anand, V., A. S. George, R. Driscoll, E. Gutmark . 2016. Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 77:212–25. doi:10.1016/j.expthermflusci.2016.04.025.
  • Anand, V., A. S. George, and E. Gutmark. 2017. Amplitude modulated instability in reactants plenum of a rotating detonation combustor. Int. J. Hydrogen Energy. 42 (17):12629–44. doi:10.1016/j.ijhydene.2017.03.218.
  • Anand, V., and E. Gutmark. 2019. Types of low frequency instabilities in rotating detonation combustors. In Active flow and combustion control 2018, 197–213 978-3-319-98176-5 doi:https://doi.org/10.1007/978-3-319-98177-2_13. Springer.
  • Andrus, I. Q., M. D. Polanka, F. R. Schauer et al. 2017. Further experimentation of a premixed rotating detonation engine. 55th AIAA Aerospace Sciences Meeting 9 - 13 January 2017 Grapevine, Texas, 0786 doi:https://doi.org/10.2514/6.2017-0786.
  • Fan, X.-J., and G. Yu. 2006. Analysis of thermophysical properties of Daqing RP-3 aviation kerosene. J. Propul. technol-Beijing. 27 (2):187.
  • Feleo, A., F. Chacon, L. W. White et al . 2019. Evaluation of oh emission for determining operation of a rotating detonation engine AIAA Scitech 2019 Forum 7-11 January 2019 San Diego, California. AIAA 2019–2252 doi:https://doi.org/10.2514/6.2019-2252.
  • Fotia, M. L., F. Schauer, T. Kaemming, J. Hoke . 2016. Experimental study of the performance of a rotating detonation engine with nozzle. J. Propul. Power. 32(3):674–81. doi:10.2514/1.B35913.
  • Gejji, R. M., I. V. Walters, S. Beard et al . 2018. Transducer installation effects on pressure measurements in PGC devices. 2018 AIAA aerospace sciences meeting 8–12 January 2018 Kissimmee, Florida, AIAA 2018–0158 doi:https://doi.org/10.2514/6.2018-0158.
  • Heiser, W. H., and D. T. Pratt. 2002. Thermodynamic cycle analysis of pulse detonation engines. J. Propul. Power. 18 (1):68–76. doi:10.2514/2.5899.
  • Jourdaine, N., N. Tsuboi, K. Ozawa, T. Kojima, A. Koichi Hayashi . 2019. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle. Proc. Combust. Inst. 37(3):3443–51. doi:10.1016/j.proci.2018.09.024.
  • Kato, Y., K. Ishihara, K. Matsuoka et al . 2016. Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle. 54th AIAA aerospace sciences meeting 4-8 January 2016 San Diego, California, USA, AIAA 2016–1406 doi:https://doi.org/10.2514/6.2016-1406.
  • Levin, V. A., and T. A. Zhuravskaya. 2018. The methods of control of stabilized detonation location in a supersonic gas flow in a plane channel. Combust. Sci. Technol. 1–13 doi:https://doi.org/10.1080/00102202.2018.1557641.
  • Liu, X.-Y., M. Cheng, Y.-Z. Zhang, J.-P. Wang . 2022. Design and optimization of aerospike nozzle for rotating detonation engine. Aerosp. Sci. Technol. 120:107300. doi:10.1016/j.ast.2021.107300.
  • Liu, P., Q. Li, Z. Huang, H. Zhang . 2018. Interpretation of wake instability at slip line in rotating detonation. Int. J. Comut. Fluid Dyn. 32(8–9):379–94. doi:10.1080/10618562.2018.1533634.
  • Liu, S., W. Liu, Z. Lin, W. Lin . 2015. Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary. Combust. Sci. Technol. 187(11):1790–804. doi:10.1080/00102202.2015.1019620.
  • Machida, T., M. Asahara, A. K. Hayashi, N. Tsuboi . 2014. Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model. Combust. Sci. Technol. 186(10–11):1758–73. doi:10.1080/00102202.2014.935647.
  • Peng, H., W. Liu, and S. Liu. 2019. Ethylene Continuous Rotating Detonation in optically accessible racetrack-like combustor. Combust. Sci. Technol. 191 (4):676–95. doi:10.1080/00102202.2018.1498850.
  • Peng, H., W. Liu, S. Liu, H. Zhang . 2018. Experimental investigations on ethylene-air Continuous Rotating Detonation wave in the hollow chamber with Laval nozzle. Acta Astronaut. 151:137–45. doi:10.1016/j.actaastro.2018.06.025.
  • Rankin, B. A., D. R. Richardson, A. W. Caswell, A. G. Naples, J. L. Hoke, F. R. Schauer . 2017. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame. 176:12–22. doi:10.1016/j.combustflame.2016.09.020.
  • Thurmond, K., I. Dunn, K. A. Ahmed, et al. 2019. Measurements of H2O, CO2, CO, and static temperature inside rotating detonation engines AIAA Scitech 2019 Forum 7-11 January 2019 San Diego, California. AIAA 2019–0747 doi:https://doi.org/10.2514/6.2019-0747.
  • Thurmond, K., S. Vasu, J. Stout et al . 2018. MHz-rate laser spectroscopic instrument for reacting flow composition and temperature measurements inside rotating detonation engines (RDEs). 2018 Joint Propulsion Conference July 9-11, 2018 Cincinnati, Ohio, AIAA 2018–4687 doi:https://doi.org/10.2514/6.2018-4687.
  • Wu, K., L. Zhang, M.-Y. Luan, J.-P. Wang . 2021. Effects of isothermal wall boundary conditions on rotating detonation engine. Combust. Sci. Technol. 193(2):211–24. doi:10.1080/00102202.2020.1847095.
  • Yetao, S., L. Meng, and W. Jianping. 2010. Continuous detonation engine and effects of different types of nozzle on its propulsion performance. Chin. J. Aeronaut. 23 (6):647–52. doi:10.1016/S1000-9361(09)60266-1.
  • Yi, T-H., J. Lou, C. Turangan et al . 2010. Effect of nozzle shapes on the performance of continuously-rotating detonation engine. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 04 January 2010 - 07 January 2010 Orlando, Florida, 152 doi:https://doi.org/10.2514/6.2010-152.
  • Zhang, H., L. Jiang, W. Liu, S. Liu . 2021. Characteristic of rotating detonation wave in the H2/Air hollow chamber with Laval nozzle. Int. J. Hydrogen Energy. 46(24):13389–401. doi:10.1016/j.ijhydene.2021.01.143.
  • Zheng, Q., H.-L. Meng, C.-S. Weng, Y.-W. Wu, W.-K. Feng, M.-L. Wu . 2020. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave. Def. Technol. 16(6):1106–15. doi:10.1016/j.dt.2020.06.028.
  • Zhu, Y., K. Wang, Z. Wang, M. Zhao, Z. Jiao, Y. Wang, W. Fan . 2020. Study on the performance of a rotating detonation chamber with different aerospike nozzles. Aerosp. Sci. Technol. 107:106338. doi:10.1016/j.ast.2020.106338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.