269
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study on Ignition and Combustion Characteristics of Li/SF6 based on Closed Thermal Power System

, , , &
Pages 480-503 | Received 01 Mar 2022, Accepted 29 May 2022, Published online: 02 Jun 2022

References

  • Avery, J. F., and G. M. Fa Eth. 1975. Combustion of a submerged gaseous oxidizer jet in a liquid metal. Symp. Combust 15:501–12. doi:10.1016/S0082-0784(75)80323-7.
  • Burgazzi, L. 2013. Analysis of solutions for passively activated safety shutdown devices for SFR. Nucl. Eng. Des 260:47–53. doi:10.1016/j.nucengdes.2013.03.020.
  • Burke, A. A., and L. G. Carreiro. 2006. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles. J. Power Sources 158:428–35. doi:10.1016/j.jpowsour.2005.09.042.
  • Cadogan, D., J. Stein, and M. Grahne. 1999. Inflatable composite habitat structures for lunar and Mars exploration. Acta Astronaut 44:399–406. doi:10.1016/S0094-5765(99)00103-4.
  • Chan, S., C. Tan, Y. Zhao, and P. Janke. 1991. Li−SF6 combustion in stored chemical energy propulsion systems. Symp. (Int.) Combust 23:1139–46. doi:10.1016/S0082-0784(06)80373-5.
  • Chan, S., and C. Tan. 1992. Complex equilibrium calculations by simplex and duality theories with applications to liquid metal fuel propulsion systems. Combust Flame 88:123–36. doi:10.1016/0010-2180(92)90047-S.
  • Chan, S. H., and M. M. M. Abou-Ellailt. 1993. Multifluid model of turbulence for Li-SF6 submerged combustion. AIAA J 31:1526–29. doi:10.2514/3.49086.
  • Chen, L., and G. Faeth. 1983. Structure of turbulent reacting gas jets submerged in liquid metals. Combust. Sci. Technol 31:277–96. doi:10.1080/00102208308923646.
  • Chen, X., N. Bose, M. Brito, F. Khan, B. Thanyamanta, and T. Zou. 2021. A review of risk analysis research for the operations of autonomous underwater vehicles. Reliab. Eng. Syst. Saf 216:108011. doi:10.1016/j.ress.2021.108011.
  • Crouse, M. E . 2017. Stored chemical energy propulsion system (SCEPS) reactor injector performance prediction modeling with experimental validation. Philadelphia, USA: The Pennsylvania State University.
  • Dutton, F. B. 1961. Dalton’s law of partial pressures. J. Chem. Educ 38:A545. doi:10.1021/ed038pA545.1.
  • Greer, C. J., M. V. Paul, and A. S. Rattner. 2018. Analysis of lithium-combustion power systems for extreme environment spacecraft. Acta Astronaut 151:68–79. doi:10.1016/j.actaastro.2018.05.039.
  • Groff, E. G., and G. M. Faeth. 1978. Steady metal combustor as a closed thermal energy source. J. Hydronaut 12:63–70. doi:10.2514/3.48158.
  • Harper, A. D. 1989. Thermochemical power systems for underwater applications. Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 136–52, IEEE.
  • Henley, S., M. Ashfold, and S. Pearce. 2003. The structure and composition of lithium fluoride films grown by off-axis pulsed laser ablation. Appl. Surf. Sci. 217:68–77. doi:10.1016/S0169-4332(03)00583-X.
  • Hsu, K.-Y., and L.-D. Chen 1991. An experimental study of Li-SF6 wick combustion and morphology analysis of combustion products. 27th Joint Propulsion Conference, Iowa, USA, 2447.
  • Hsu, K.-Y., and L.-D. Chen. 1995. An experimental investigation of Li and SF6 wick combustion. Combust Flame 102:73–86. doi:10.1016/0010-2180(94)00238-N.
  • Hughes, T. G., R. B. Smith, and D. H. Kiely. 1983. Stored chemical energy propulsion system for underwater applications. J. Energy 7:128–33. doi:10.2514/3.62644.
  • Kim, Y. J., H. T. Kim, C. Lee, and K. W. Lee. 2009. Development of a power control system for AUVs probing for underwater mineral resources. J. Mar. Sci. Appl 8:259. doi:10.1007/s11804-009-8077-1.
  • Leonard, J. T., R. Burns, J. Beither, R. Ouelette, and R. Darwin. 1994. Use of copper powder extinguishers on lithium fires. Washington DC: Naval Research Lab.
  • Li, X., J. Huang, and A. Faghri. 2015. Modeling study of a Li–O2 battery with an active cathode. Energy 81:489–500. doi:10.1016/j.energy.2014.12.062.
  • Liu, Q., Y. Zhang, H. Pan, W. Tao, and H. Wu. 2017. Effects of lithium fluoride addition on sintering characteristics and microwave dielectric properties of rock–salt structure Li 2 Mg 4 TiO 7 ceramics. J. Mater. Sci. Mater. Electron 28:16262–66.
  • Liu, C., S. Li, X. Li, Y. Wang, and Y. Chen 2018. Experimental investigation of Li and SF6 combustion for stored chemical energy propulsion systems. 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS), Wuhan, China, 1–6, IEEE.
  • Lyu, H.-Y., L.-D. Chen, and K.-Y. Hsu. 1992. Prediction of LI-SF6 wick combustion. J. Propuls. Power 8:1131–37. doi:10.2514/3.11453.
  • Lyu, H. Y., and L. D. Chen 1993. On the estimates of Li2S thermodynamic properties for prediction of Li-SF6 wick combustion. 29th Joint Propulsion Conference and Exhibit, Iowa, USA.
  • Markowitz, M. M., and D. A. Boryta. 1962. Lithium metal-gas reactions. J. Chem. Eng. Data 7:586–91. doi:10.1021/je60015a047.
  • Mendez, A., T. Leo, and M. Herreros. 2014. Current state of technology of fuel cell power systems for autonomous underwater vehicles. Energies 7:4676–93. doi:10.3390/en7074676.
  • Qin, K., H. Wang, X. Wang, Y. Sun, and K. Luo. 2020. Thermodynamic and experimental investigation of a metal fuelled steam Rankine cycle for unmanned underwater vehicles. Energy Convers. Manage 223:113281. doi:10.1016/j.enconman.2020.113281.
  • Sands, T. 2020. Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV). J. Mar. Sci. Eng 8:578. doi:10.3390/jmse8080578.
  • Schiemann, M., J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, and G. Schmid. 2016. A review on lithium combustion. Appl. Energy 162:948–65. doi:10.1016/j.apenergy.2015.10.172.
  • Shafirovich, E. Y., A. A. Shiryaev, and U. I. Goldshleger. 1993. Magnesium and carbon dioxide - A rocket propellant for Mars missions. J. Propuls. Power 9:197–203. doi:10.2514/3.23609.
  • Shih, N. C., B. J. Weng, J. Y. Lee, and Y. C. Hsiao. 2014. Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles. Int. J. Hydrogen Energy 39:13894–901. doi:10.1016/j.ijhydene.2014.01.113.
  • Stull, D. R. 1965. JANAF thermochemical tables. Michigan, USA: Clearinghouse.
  • Wang, X., J. Shang, Z. Luo, T. Li, X. Zhang, and J. Li. 2012. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew. Sust. Energ. Rev 16:1958–70. doi:10.1016/j.rser.2011.12.016.
  • Weydahl, H., M. Gilljam, T. Lian, T. C. Johannessen, S. I. Holm, and J. I. Hasvold. 2020. Fuel cell systems for long-endurance autonomous underwater vehicles – Challenges and benefits - ScienceDirect. Int. J. Hydrogen Energy 45:5543–53. doi:10.1016/j.ijhydene.2019.05.035.
  • Yan, Z.-P., H.-M. Yu, and S.-P. Hou. 2016. Diving control of underactuated unmanned undersea vehicle using integral-fast terminal sliding mode control. J. Cent. South Univ 23:1085–94. doi:10.1007/s11771-016-0358-7.
  • Yan, M., W.-P. Wang, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo. 2019. Interfacial design for lithium–sulfur batteries: From liquid to solid. EnergyChem 1:100002. doi:10.1016/j.enchem.2019.100002.
  • Yuan, Q., F. Zhao, W. Wang, Y. Zhao, Z. Liang, and D. Yan. 2015. Overcharge failure investigation of lithium-ion batteries. Electrochim. Acta 178:682–88. doi:10.1016/j.electacta.2015.07.147.
  • Zhou, C., H. Qiu, H. Zheng, and X. Pan 2009. Numerical simulation of Li/SF6 combustion flow field. The Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2, Kobe, Japan, The Japan Society of Mechanical Engineers, 2-111-2–116.
  • Zhou, L., W. Zhang, Y. Wang, S. Liang, Y. Gan, H. Huang, J. Zhang, Y. Xia, and C. Liang. 2020. Lithium sulfide as cathode materials for lithium-ion batteries: Advances and challenges. J. Chem. 2020:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.