239
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Preparation of superabsorbent lignin-based composite inhibitor and research on its prevention and control characteristics of coal spontaneous combustion

, , , , , , & show all
Pages 608-628 | Received 14 May 2022, Accepted 19 Jun 2022, Published online: 27 Jun 2022

References

  • Ali, B., et al. 2020. Effect of molasses and water–cement ratio on properties of recycled aggregate concrete. Arab. J. Sci. Eng. 45 (5):3455–67. doi:10.1007/s13369-019-04117-w.
  • Chen, X., W. Wang, and C. Jiao. 2017. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J. Hazard. Mater. 331:257–64. doi:10.1016/j.jhazmat.2017.02.011.
  • Chen, J., et al. 2022. Influence of stiffness difference on rock fracture based on particle flow simulation. J. Shandong Univ. Sci. Technol. 41 (2):51–59. doi:10.16452/j.cnki.sdkjzk.2022.02.006.
  • Dou, G., D. Wang, X. Zhong, B. Qin, et al. 2014. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Process. Technol. 120:123–27. doi:10.1016/j.fuproc.2013.12.016.
  • Fan, Y.J., Y.Y. Zhao, X.M. Hu, M.Y. Wu, and D. Xue, et al. 2020a. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 263 (March 2019):116693. doi:10.1016/j.fuel.2019.116693.
  • Fan, Y.-J., -Y.-Y. Zhao, X.-M. Hu, M.-Y. Wu, D. Xue, et al. 2020b. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 263 (October):116693. doi:10.1016/j.fuel.2019.116693.
  • Guanhua, N., X. Hongchao, L. Zhao, Z. Lingxun, N. Yunyun, et al. 2018. Improving the permeability of coal seam with pulsating hydraulic fracturing technique: A case study in Changping coal mine, China. Process Saf. Environ. Prot. 117:565–72. doi:10.1016/j.psep.2018.06.001.
  • Guo, Y. 2020. Research of VOCs emission characteristics and treatment status in refining and chemical enterprises. J. Shandong Univ. Sci. Technol. 39 (6):63–70. doi:10.16452/j.cnki.sdkjzk.2020.06.008.
  • Guo, S., S. Yuan, W. Geng, Z. Dong, et al. 2021. Preparation and optimization of thermosensitive hydrogels for inhibiting coal oxidation. Int. J. Energy Res. 45 (5):7783–96. doi:10.1002/er.6362.
  • Huang, Z., L. Yan, Y. Zhang, Y. Gao, X. Liu, Y. Liu, Z. Li, et al. 2019. Research on a new composite hydrogel inhibitor of tea polyphenols modified with polypropylene and mixed with halloysite nanotubes. Fuel 253 (December 2018):527–39. doi:10.1016/j.fuel.2019.03.152.
  • Huang, Z., Y. Tian, Z. Shao, Y. Gao, Y. Zhang, J. Li, H. Zhu, et al. 2020. Novel super-absorbent polymer-grafted tea polyphenol composite inhibitor for the prevention of coal spontaneous combustion. Fire Mater. 44 (7):975–88. doi:10.1002/fam.2900.
  • Huang, Z., D. Song, Y. Zhang, Y. Yin, X. Hu, Y. Gao, Y. Yang, Y. Tian, et al. 2022. Characterization and performance testing of an intumescent nanoinhibitor for inhibiting coal spontaneous combustion. ACS Omega 7 (20):17202–14. doi:10.1021/acsomega.2c00998.
  • Huo, Y., H. Zhu, and X. He. 2022. Study of butylated hydroxytoluene inhibiting the coal oxidation at low temperature: Combining experiments and quantum chemical calculations. ACS Omega 7 (22):18552–68. doi:10.1021/acsomega.2c01229.
  • Jia, R., et al. 2020. Analysis of coal tar hydrogenation product by comprehensive two-dimensional gas chromatography-mass spectrometry. J. Shandong Univ. Sci. Technol. 39 (6):49–55. doi:10.16452/j.cnki.sdkjzk.2020.06.006.
  • Koshelev, A. V., E. I. Tikhomirova, and O. V. Atamanova. 2019. Effect of bentonite modification with glycerol on adsorbent structure and physicochemical characteristics. Russ. J. Phys. Chem. B 13 (6):1051–56. doi:10.1134/S199079311906006X.
  • Le, V. P. 2021. Performance of asphalt binder containing sugarcane waste molasses in hot mix asphalt. Case Stud. Constr. Mater. 15 (March):e00595. doi:10.1016/j.cscm.2021.e00595.
  • Li, J., Z. Li, Y. Yang, X. Zhang, D. Yan, L. Liu, et al. 2017. Inhibitive effects of antioxidants on coal spontaneous combustion. Energy Fuels 31 (12):14180–90. doi:10.1021/acs.energyfuels.7b02339.
  • Li, J., Z. Li, Y. Yang, B. Kong, C. Wang, et al. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol. 171 (September 2017):350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, Y., X. Hu, W. Cheng, Z. Shao, D. Xue, Y. Zhao, W. Lu, et al. 2020. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature. Fuel 263 (October 2019):116779. doi:10.1016/j.fuel.2019.116779.
  • Liotta, R., G. Brons, and J. Isaacs. 1983. Oxidative weathering of Illinois No. 6 coal. Fuel 62 (7):781–91. doi:10.1016/0016-2361(83)90028-5.
  • Liu, G., W. Cheng, and L. Chen. 2017. Investigating and optimizing the mix proportion of pumping wet-mix shotcrete with polypropylene fiber. Constr. Build. Mater. 150:14–23. doi:10.1016/j.conbuildmat.2017.05.169.
  • Liu, Z., H. Yang, W. Wang, W. Cheng, L. Xin, et al. 2018. Experimental study on the pore structure fractals and seepage characteristics of a coal sample around a borehole in coal seam water infusion. Transp. Porous Media 125 (2):289–309. doi:10.1007/s11242-018-1119-x.
  • Liu, L., et al. 2020. Dual damage mechanism of supercritical CO2 adsorption-induced weakening effect on coal. J. Shandong Univ. Sci. Technol. 39 (4):79–86. doi:10.16452/j.cnki.sdkjzk.2020.04.010.
  • Lopez, D., Y. Sanada, and F. Mondragon. 1998. Effect of low-temperature oxidation of coal on hydrogen-transfer capability. Fuel 77 (14):1623–28. doi:10.1016/S0016-2361(98)00086-6.
  • Lu, W., B. Guo, G. Qi, W. Cheng, W. Yang, et al. 2020. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution. Fuel 265 (August 2019):117032. doi:10.1016/j.fuel.2020.117032.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, Z. Li, et al. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305 (July):121626. doi:10.1016/j.fuel.2021.121626.
  • Lynch, B. M., L. I. Lancaster, and J. A. MacPhee. 1987. Carbonyl groups from chemically and thermally promoted decomposition of peroxides on coal surfaces. Detection of specific types using photoacoustic infrared Fourier transform spectroscopy. Fuel 66 (7):979–83. doi:10.1016/0016-2361(87)90339-5.
  • Meng, Y., J. Lu, Y. Cheng, Q. Li, H. Wang, et al. 2019. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 135:1006–19. doi:10.1016/j.ijbiomac.2019.05.198.
  • Pandey, J., N. K. Mohalik, R. K. Mishra, A. Khalkho, D. Kumar, V. K. Singh, et al. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technol 51 (2):227–45. doi:10.1007/s10694-012-0302-9.
  • Song, B., H. Liang, R. Sun, P. Peng, Y. Jiang, D. She, et al. 2020. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 144:219–30. doi:10.1016/j.ijbiomac.2019.12.082.
  • Tang, Y. 2018. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. J. Energy Inst. 91 (5):639–45. doi:10.1016/j.joei.2017.06.006.
  • Tian, R., Q. Liu, W. Zhang, Y. Zhang, et al. 2018. Preparation of lignin-based hydrogel and its adsorption on Cu2+ ions and Co2+ ions in wastewaters. J Inorg Organomet Polym Mater 28 (6):2545–53. doi:10.1007/s10904-018-0943-3.
  • Tsai, Y.-T., Y. Yang, C. Wang, C.-M. Shu, J. Deng, et al. 2018. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. Int. J. Energy Res. 42 (3):1158–71. doi:10.1002/er.3915.
  • Wang, D., G. Dou, X. Zhong, H. Xin, B. Qin, et al. 2014. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117 (PART A):218–23. doi:10.1016/j.fuel.2013.09.070.
  • Wang, G., G. Yan, X. Zhang, W. Du, Q. Huang, L. Sun, X. Zhang, et al. 2016. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J. Loss Prev. Process Ind. 44:474–86. doi:10.1016/j.jlp.2016.10.013.
  • Wang, C., C. Lv, Z. Bai, J. Deng, F. Kang, Y. Xiao, C.-M. Shu, et al. 2021. Synergistic acceleration effect of coal spontaneous combustion caused by moisture and associated pyrite. Fuel 304 (July):121458. doi:10.1016/j.fuel.2021.121458.
  • Wang, X., H. Deng, C. Deng, C. Cui, Y. Shan, Z. Song, et al. 2022. Study on the spontaneous combustion and oxidation mechanism of low molecular ketone compounds in coal. Fuel 321 (September 2021):124022. doi:10.1016/j.fuel.2022.124022.
  • Wei, S., W. Chen, Z. Tong, N. Jiang, M. Zhu, et al. 2021. Synthesis of a functional biomass lignin-based hydrogel with high swelling and adsorption capability towards Acid Red 73. Environ. Sci. Pollut. Res. 28 (37):51306–20. doi:10.1007/s11356-021-14324-4.
  • Xi, Z., M. Li, X. Li, L. Lu, J. Wang, et al. 2022. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal. Fuel 314 (October 2021):122732. doi:10.1016/j.fuel.2021.122732.
  • Xue, B. L., J. L. Wen, and R. C. Sun. 2015. Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels. J. Appl. Polym. Sci. 132 (40):1–8. doi:10.1002/app.42638.
  • Xue, D., X. Hu, W. Cheng, J. Wei, Y. Zhao, L. Shen, et al. 2020a. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications. Fuel 264 (December 2019):116903. doi:10.1016/j.fuel.2019.116903.
  • Xue, D., X. Hu, W. Cheng, M. Wu, Z. Shao, Y. Li, Y. Zhao, K. Zhang, et al. 2020b. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel. Fuel 266 (December 2019):117036. doi:10.1016/j.fuel.2020.117036.
  • Xue, D., X. Hu, W. Cheng, X. Yu, M. Wu, Y. Zhao, Y. Lu, R. Pan, H. Niu, S. Hu, et al. 2020c. Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate. Energy 213:118901. doi:10.1016/j.energy.2020.118901.
  • Xue, D., X. Hu, H. Dong, W. Cheng, W. Wang, Y. Liang, et al. 2022. Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal. Fuel 310 (PB):122160. doi:10.1016/j.fuel.2021.122160.
  • Yan, B.-R., X.-M. Hu, W.-M. Cheng, -Y.-Y. Zhao, W. Wang, Y.-T. Liang, T.-Y. Liu, Y. Feng, D. Xue, et al. 2021. A novel intumescent flame-retardant to inhibit the spontaneous combustion of coal. Fuel 297 (November 2020):120768. doi:10.1016/j.fuel.2021.120768.
  • Yang, Y., and Y.-T. Tsai. 2018. Inhibition ability of ionic liquid [Bmim][NO3], [Bmim][BF4], and [Emim][BF4] on spontaneous coal combustion. J Therm Anal Calorim 132 (3):1943–51. doi:10.1007/s10973-018-7008-2.
  • Yu, H., W. Cheng, H. Peng, Y. Xie, et al. 2018. An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model. Adv. Powder Technol. 29 (4):941–56. doi:10.1016/j.apt.2018.01.012.
  • Zhang, Q., X. M. Hu, M. Y. Wu, M. M. Wang, Y. Y. Zhao, T. T. Li, et al. 2019. Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 136 (October 2018):34–43. doi:10.1016/j.reactfunctpolym.2019.01.002.
  • Zhang, F., G. Xu, L. Zhu, J. Jiang, et al. 2021. Effects of hydrolysis treatment on the structure and properties of semi-interpenetrating superabsorbent polymers. J. Appl. Polym. Sci. 138 (44):1–11. doi:10.1002/app.51307.
  • Zhang, N., N. Cheng, and Q. Liu. 2021. Functionalized biomass carbon-based adsorbent for simultaneous removal of pb2+ and mb in wastewater. Materials 14 (13):1–14. doi:10.3390/ma14133537.
  • Zhong, Y., S. Yang, X. Hu, J. Cai, Z. Tang, Q. Xu, et al. 2018. Whole process inhibition of a composite superabsorbent polymer-based antioxidant on coal spontaneous combustion. Arab. J. Sci. Eng. 43 (11):5999–6009. doi:10.1007/s13369-018-3167-5.
  • Zhuo, H., B. Qin, and Q. Qin. 2021. The impact of surface air leakage on coal spontaneous combustion hazardous zone in gob of shallow coal seams: A case study of Bulianta Mine, China. Fuel 295 (January):120636. doi:10.1016/j.fuel.2021.120636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.