238
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thermal effects and kinetics behaviors of coal spontaneous combustion via synchronous thermal analyzer under different heating rates

, , , , ORCID Icon, , , , & show all
Pages 702-715 | Received 27 Apr 2022, Accepted 28 Jun 2022, Published online: 06 Jul 2022

References

  • Cai, J., S. Yang, W. Zheng, W. Song, and R. Gupta. 2021. Dissect the capacity of low-temperature oxidation of coal with different metamorphic degrees. Fuel 292:120256. doi:10.1016/j.fuel.2021.120256.
  • Cheng, Z., Z. Tan, Z. Guo, J. Yang, and Q. Wang. 2020. Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry. Renew Sustain Energy Rev 131:110034. doi:10.1016/j.rser.2020.110034.
  • Danish, E., and M. Onder. 2020. Application of fuzzy logic for predicting of mine fire in underground coal mine. Saf Health Work 11 (3):322–34. doi:10.1016/j.shaw.2020.06.005.
  • Flynn, J. H., and L. A. Wall. 1966. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem 70 (6):487. doi:10.6028/jres.070A.043.
  • Gbadamosi, A. R., M. Onifade, B. Genc, and S. Rupprecht. 2020. Analysis of spontaneous combustion liability indices and coal recording standards/basis. Int J Min Sci Technol 30 (5):723–36. doi:10.1016/j.ijmst.2020.03.016.
  • Huang, Z., X. Liu, Y. Gao, Y. Zhang, Z. Li, H. Wang, and X. Shi. 2019. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion. Fuel 254:115610. doi:10.1016/j.fuel.2019.06.018.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2017a. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renew Energy 101:293–300. doi:10.1016/j.renene.2016.08.072.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2017b. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Appl. Therm. Eng 125:1446–55. doi:10.1016/j.applthermaleng.2017.07.128.
  • Kök, M. V., and B. Yildirim. 2019. Gasification profiles of Thrace region coal under CO2, N2/CO2, and N2/DRY air environments. J Pet Sci Eng 175:237–45. doi:10.1016/j.petrol.2018.12.050.
  • Kök, M. V., and B. Yildirim. 2020. Gasification kinetics of Thrace region coal by thermogravimetry analysis. J Pet Sci Eng 188:106869. doi:10.1016/j.petrol.2019.106869.
  • Li, B., G. Chen, H. Zhang, and C. Sheng. 2014. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Li, Z., Y. Zhang, X. Jing, Y. Zhang, and L. Chang. 2016. Insight into the intrinsic reaction of brown coal oxidation at low temperature: Differential scanning calorimetry study. Fuel Process. Technol 147:64–70. doi:10.1016/j.fuproc.2015.07.030.
  • Li, P., Y. Yang, J. Li, G. Miao, K. Zheng, and Y. Wang. 2021. Study on the oxidation thermal kinetics of the spontaneous combustion characteristics of water-immersed coal. Thermochim Acta 699:178914. doi:10.1016/j.tca.2021.178914.
  • Liang, Y., F. Tian, B. Guo, and Z. Liu. 2021. Experimental investigation on microstructure evolution and spontaneous combustion properties of aerobic heated coal. Fuel 306:121766. doi:10.1016/j.fuel.2021.121766.
  • Liu, L., Y. Pang, D. Lv, K. Wang, and Y. Wang. 2021. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles. Process Saf Environ Prot 151:39–50. doi:10.1016/j.psep.2021.05.011.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Mandal, S., N. K. Mohalik, S. K. Ray, A. K. Khan, D. Mishra, and J. K. Pandey. 2022. A comparative kinetic study between TGA & DSC techniques using model-free and model-based analyses to assess spontaneous combustion propensity of Indian coals. Process Saf Environ Prot 159:1113–26. doi:10.1016/j.psep.2022.01.045.
  • Mohalik, N., D. Panigrahi, and V. Singh. 2009. Application of thermal analysis techniques to assess proneness of coal to spontaneous heating: An overview. J Therm Anal Calorim 98 (2):507–19. doi:10.1007/s10973-009-0305-z.
  • Mohalik, N. K., S. Mandal, S. K. Ray, A. M. Khan, D. Mishra, and J. K. Pandey. 2022. TGA/DSC study to characterise and classify coal seams conforming to susceptibility towards spontaneous combustion. Int J Min Sci Technol 32 (1):75–88. doi:10.1016/j.ijmst.2021.12.002.
  • Naktiyok, J., H. Bayrakçeken, A. K. Özer, and M. S. Gülaboğlu. 2017. Investigation of combustion kinetics of Umutbaca-lignite by thermal analysis technique. J Therm Anal Calorim 129 (1):531–39. doi:10.1007/s10973-017-6149-z.
  • Onifade, M., B. Genc, and A. Carpede. 2018. A new apparatus to establish the spontaneous combustion propensity of coals and coal-shales. Int J Min Sci Technol 28 (4):649–55. doi:10.1016/j.ijmst.2018.05.012.
  • Onifade, M., and B. Genc. 2018. Prediction of the spontaneous combustion liability of coals and coal shales using statistical analysis. J. S. Afr. Inst. Min. Metall 118 (8):799–808. doi:10.17159/2411-9717/2018/v118n8a2.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int J Min Sci Technol 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int J Min Sci Technol 30 (5):691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan 38 (11):1881–86. doi:10.1246/bcsj.38.1881.
  • Qi, X., Q. Li, H. Zhang, and H. Xin. 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J Energy Inst 90 (4):544–55. doi:10.1016/j.joei.2016.05.007.
  • Ribeiro, A. M., E. Ramalho, M. P. Neto, and R. M. Pilão. 2022. Thermogravimetric analysis of high-density cork granules using isoconversional methods. Energy Rep 8:442–47. doi:10.1016/j.egyr.2022.01.100.
  • Saini, V., R. P. Gupta, and M. K. Arora. 2016. Environmental impact studies in coalfields in India: A case study from Jharia coal-field. Renew Sustain Energy Rev 53:1222–39. doi:10.1016/j.rser.2015.09.072.
  • Scaccia, S. 2013. TG–FTIR and kinetics of devolatilization of Sulcis coal. Journal of Analytical and Applied Pyrolysis 104:95–102. doi:10.1016/j.jaap.2013.09.002.
  • Sensogut, C., A. H. Ozdeniz, and I. B. Gundogdu. 2008. Temperature profiles of coal stockpiles. Energy Source Part A 30 (4):339–48. doi:10.1080/15567030600824882.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines. Procedia Eng 62:78–90. doi:10.1016/j.proeng.2013.08.046.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Uwaoma, R. C., B. J. Schröer, C. A. Strydom, J. R. Bunt, R. H. Matjie, K. Mphahlele, and J. A. Meyer. 2022. Kinetics, thermodynamics, and thermal decomposition characteristics of co-pyrolysis of municipality solid waste residue hydrochar and <1.5 g/cm 3 fraction of South African discarded fine coal. Bioresour Technol Rep 18:100998. doi:10.1016/j.biteb.2022.100998.
  • Xiao, Y., K. Q. Zhong, J. Y. Tian, L. Yin, Y. Tian, and C. M. Shu. 2021. Thermal extraction from a low-temperature stage of coal pile spontaneous combustion by two-phase closed thermosyphon. J Therm Anal Calorim 144 (2):587–97. doi:10.1007/s10973-021-10678-6.
  • Xiao, Y., J. W. Liu, J. F. Zeng, X. Lu, Y. Tian, and C. M. Shu. 2022. Coupling effect of operational factors on heat extraction from a coal pile using a two-phase closed thermosyphon. Energy 239:122371. doi:10.1016/j.energy.2021.122371.
  • Zhang, Y., J. Wu, L. Chang, J. Wang, S. Xue, and Z. Li. 2013. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). Int J Coal Geol 120:41–49. doi:10.1016/j.coal.2013.09.005.
  • Zhang, Y., J. Wang, J. Wu, S. Xue, Z. Li, and L. Chang. 2015. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. International Journal of Coal Geology 140:1–8. doi:10.1016/j.coal.2015.01.001.
  • Zhang, Y., B. Wu, S. H. Liu, B. Lei, J. Zhao, and Y. Zhao. 2020. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects. Fuel 278:118223. doi:10.1016/j.fuel.2020.118223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.