109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study on Coal’s Spontaneous Combustion Propensity based on the Correlation between Oxygen Consumption and Heat Generation

, , &
Pages 2258-2273 | Received 26 Apr 2022, Accepted 09 Jul 2022, Published online: 17 Jul 2022

References

  • Arisoy, A., and B. Beamish. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel 159:412–17. doi:10.1016/j.fuel.2015.06.054.
  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2000. Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochim. Acta 362:79–87. doi:10.1016/S0040-6031(00)00588-8.
  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol 45:217–24. doi:10.1016/S0166-5162(00)00034-3.
  • Beamish, B. B. 2005. Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. Int. J. Coal Geol 64:139–44. doi:10.1016/j.coal.2005.03.012.
  • Clarkson, C. R., and R. M. Bustin. 1999. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 78:1333–44. doi:10.1016/S0016-2361(99)00055-1.
  • Gbadamosi, A. R., M. Onifade, B. Genc, and S. Rupprecht. 2020. Spontaneous combustion liability indices of coal. Combust. Sci. Technol 193:2659–2671. doi:10.1080/00102202.2020.1754208.
  • Han, W., G. Zhou, D. Gao, Z. Zhang, Z. Wei, H. Wang, and H. Yang. 2020. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion‑nitrogen adsorption porosimetry. Powder Technol 362:386–98. doi:10.1016/j.powtec.2019.11.092.
  • He, Q.-L., W. Lu, J.-L. Li, and J. Xu. 2020. Study on thermokinetic parameters of coal-oxygen reaction path with constant temperature difference guiding method. Combust. Sci. Technol 191:2163–2185. doi:10.1080/00102202.2020.1858291.
  • I, J.-L., W. Lu, Y.-T. Liang, G.-S. Qi, B. Kong, and X.-M. Hu. 2020. Variation of CO2/CO ratio during pure-oxidation of feed coal. Fuel 262:116588. doi:10.1016/j.fuel.2019.116588.
  • Kronbauer, M. A., M. Izquierdo, S. Dai, F. B. Waanders, N. J. Wagner, M. Mastalerz, J. C. Hower, M. L. S. Oliveira, S. R. Taffarel, D. Bizani, et al. 2013. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ 456-457:95–103. doi:10.1016/j.scitotenv.2013.02.066.
  • Kumar Mohalik, N., S. Mandal, S. Kumar Ray, A. Mobin Khan, D. Mishra, and J. Krishna Pandey. 2022. TGA/DSC study to characterise and classify coal seams conforming to susceptibility towards spontaneous combustion. Int. J. Min. Sci. Technol 32:75–88. doi:10.1016/j.ijmst.2021.12.002.
  • Li, J.-L., W. Lu, B. Kong, Y.-J. Cao, G.-S. Qi, and C.-R. Qin. 2019. Mechanism of gas generation during low-temperature oxidation of coal and model compounds. Energy Fuels 33:1527–39. doi:10.1021/acs.energyfuels.8b03571.
  • Li, J.-L., W. Lu, Y.-T. Liang, G.-S. Qi, B. Kong, and X.-M. Hu. 2020. Variation of CO2/CO ratio during pure-oxidation of feed coal. Fuel 262:116588. doi:10.1016/j.fuel.2019.116588.
  • Lu, W., D. Wang, G. Dai, and X. Zhong. 2005. Study on oxygen physisorpton of coal. J Hunan Univ. Sci. Technol 20:6–10.
  • Lu, W., Q. Hu, X. Zhong, and D. Wang. 2007. Gradual self-activation reaction theory of spontaneous combustion of coal. J. China Univ. Min. Technol 36:111–15.
  • Lu, W., Y.-J. Cao, Z.-A. Huang, J. C. Tien, and B. Qin. 2017. Study on adiabatic oxidation characters of coal with applying a constant temperature difference to guide the oxidation of coal with temperature rising. Energy Fuels 31:882–90. doi:10.1021/acs.energyfuels.6b02247.
  • Ma, L., W. Yu, L. Ren, X. Qin, and Q. Wang. 2019. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres. Fuel 246:259–67. doi:10.1016/j.fuel.2019.02.073.
  • Mathews, J. P., and A. L. Chaffee. 2012. The molecular representations of coal – A review. Fuel 96:1–14. doi:10.1016/j.fuel.2011.11.025.
  • Merrick, D. 1983. Mathematical models of the thermal decomposition of coal: 2. Specific heats and heats of reaction. Fuel 62:540–46. doi:10.1016/0016-2361(83)90223-5.
  • Mishra, D. P. 2022. Effects of intrinsic properties, particle size and specific surface area on WOP and spontaneous combustion susceptibility of coal. Adv. Powder Technol 33:103454. doi:10.1016/j.apt.2022.103454.
  • Mohalik, N. K., E. Lester, and I. S. Lowndes. 2017. Review of experimental methods to determine spontaneous combustion susceptibility of coal – Indian context. Int. J. Min. Reclam. Environ 31:301–32. doi:10.1080/17480930.2016.1232334.
  • Mohalik, N. K., E. Lester, and I. S. Lowndes. 2018. Development a modified crossing point temperature (CPTHR) method to assess spontaneous combustion propensity of coal and its chemo-metric analysis. J. Loss. Prevent. Proc 56:359–69. doi:10.1016/j.jlp.2018.09.001.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47. doi:10.1016/j.fuel.2015.09.041.
  • Onifade, M., and B. Genc. 2018a. Prediction of the spontaneous combustion liability of coals and coal shales using statistical analysis. J. South. Afr. Inst. Min. Metall 118. doi:10.17159/2411-9717/2018/v118n8a2.
  • Onifade, M., and B. Genc. 2018b. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol 28:933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol 30:303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol 30:691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Prot 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Qi, X., H. Xin, D. Wang, and G. Qi. 2013. A rapid method for determining the R 70 self-heating rate of coal. Thermochim. Acta 571:21–27. doi:10.1016/j.tca.2013.08.008.
  • Ray, S. K., D. C. Panigrahi, and A. K. Varma. 2014. An electro-chemical method for determining the susceptibility of Indian coals to spontaneous heating. Int. J. Coal Geol 128-129:68–80. doi:10.1016/j.coal.2014.04.008.
  • Shi, Q., B. Qin, H. Liang, Y. Gao, Q. Bi, and B. Qu. 2018. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China. Fuel 216:181–89. doi:10.1016/j.fuel.2017.12.012.
  • Wang, D.-M., Q. Xu-yao, Z. Xiao-xing, and G. Jun-jie. 2009. Test method for the propensity of coal to spontaneous combustion. Procedia Earth Planet. Sci 1:20–26. doi:10.1016/j.proeps.2009.09.006.
  • Wang, H. 2009. Test methods for assessing susceptibility of coals to spontaneous combustion: A literature review. J. Saf. Environ 9:132–37.
  • Wang, D.-M., H.-H. Xin, X.-Y. Qi, G.-L. Dou, G.-S. Qi, and L.-Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, J., Y. Zhang, S. Xue, J. Wu, Y. Tang, and L. Chang. 2018. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions. Fuel Process. Technol 179:60–71. doi:10.1016/j.fuproc.2018.06.015.
  • Wojtacha-Rychtera, K., and A. Smolińskib. 2018. Multi-component gas mixture transport through porous structure of coal.pdf. Fuel 233:37–44. doi:10.1016/j.fuel.2018.06.040.
  • Xiao, Y., S.-J. Ren, J. Deng, and C.-M. Shu. 2018. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 227:325–33. doi:10.1016/j.fuel.2018.04.070.
  • Xu, Q., S. Yang, J. Cai, B. Zhou, and Y. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process Saf. Environ. Prot 118:195–202. doi:10.1016/j.psep.2018.06.040.
  • Xu, Q., S. Yang, W. Yang, Z. Tang, W. Song, B. Zhou, and X. Jiang. 2021. Effect of particle size and low-temperature secondary oxidation on the active groups in coal structures. Process Saf. Environ. Prot 149:334–44. doi:10.1016/j.psep.2020.10.056.
  • Yin, W., and W. Haihui. 2015. Physical nature of the indexes for ranking self-heating tendency of coal based on the conventional crossing-point temperature technique. J. China Coal Soc 40:377–82.
  • Zhang, Y., J. Wang, J. Wu, S. Xue, Z. Li, and L. Chang. 2015. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. Int. J. Coal Geol 140:1–8. doi:10.1016/j.coal.2015.01.001.
  • Zhang, Y., J. Wang, S. Xue, J. Wu, L. Chang, and Z. Li. 2016. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. Int. J. Coal Geol 154-155:155–64. doi:10.1016/j.coal.2016.01.002.
  • Zhang, Y., C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, and Q. Li. 2019. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242:287–94. doi:10.1016/j.fuel.2019.01.043.
  • Zhao, J., J. Deng, L. Chen, T. Wang, J. Song, Y. Zhang, C.-M. Shu, and Q. Zeng. 2019. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy 181:136–47. doi:10.1016/j.energy.2019.05.158.
  • Zhong, X.-X., D.-M. Wang, X.-Y. Qi, and J.-J. Gu. 2009. Research on oxidation kinetics test methods concerning the spontaneous combustion of coal. J. China Univ. Min. Technol 38:789–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.